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ABSTRACT 

The o b j e c t  of t h i s  i n v e s t i g a t i o n  was t o  develop a general 

c o n s t i t u t i  ve equa-i-ion f o r  t h e  room temperature mchan i  ca I response 

o f  nuc lea r  grade graphi te ,  The d i s t i n g u i s h i n g  c h a r a c t e r i s t i c s  of 

t h i s  response are (i l t h e  s t r e s s - s t r a i n  r e l a t i o n  appears t o  b e  i n -  

dependent of t h e  r a t e  of  loading s h o r t  of impact rates;  ( i i )  l-he 

response e x h i b i t s  a pronounced degree o f  t ransverse  iso t ropy ;  and 

( i i i ) ,  t h e  mater ia l  undergoes permanent p l a s t i c  deformat ion even a t  

t h e  lowest s t ress  leve ls ,  

The g rea tes t  p o r t i o n  of t h i s  r e p o r t  i s  devol-ed t o  the  

d e r i v a t i o n  o f  c o n s t i t u t i v e  r e l a t i o n s  f o r  t h e  s c a l a r  and th ree  d i -  

mensional cases, The s c a l a r  theory  succeeds i n  demonstrat ing r a t e  

independence and p l a s t i c i t y  whi l e  the  -three dimensional Theory in-  

corporates t ransverse  i sotropy, 

Comparison o f  t h e  theory  i s  made w i t h  some avai l a b l e  

u n i a x i a l  c y c l i c  load-s t ra in  data Cot- ATJ graphi te ,  

prov ides an e x c e l l e n t  c o r r e l a t i o n  w i t h  experiment w h i l e  l-he th ree  

dimensional theory  g ives  a reasonably good conservat ive c o r r e l a t i o n ,  

The s c a l a r  theory  



I I NTRODUCI I ON 

A, Purpose and Scope of Research 

The object of this investigation was to develop a general 

constitutive equation for the room temperature mechanical behavior 

of nuclear grade graphite. To I-his end, this report presents a 

constitutive theory f o r  the rate independent transversely isotropic 

response of graphite or any other material exhibiting simi lar dis- 

tinguishing characteristics, 

is made to uniaxial cyclic load-strain experiments, A comparison 

A specific application of the theory 

of the theoretical and experimental results is given. 

In this analysis the s-1-ress tensor is taken to be a tensor 

functional of some measure of deformation, Invariance requirements 

place restrictions on the form of these functionals, I f  a function 

i s  considered as a mapping of a s e t  of numbers onto another such 

sel- of numbers, then a functional may be considered a impping of a 

seP of functions onto anofher such set of funcl-ions, Involved i n  

these mappings are kernels, cal led material functions, describing 

the behavior of the material, FOP example, in the  case of a linear 

viscoelastic material which is isotropic and whose mechanical 

response i s  described by means of a linear functional, two mi;ferial 

funcfions are needed, say the shear and bulk relaxal-ion functions, 

Experimn-fa1 dal-a for ATJ graphite consisting of s t ress-  

strain (lanai-tudinal and transverse) data for uniaxial loading 

parallel 1-0 the three major mal-erial axes i s  available, This data 

is sufficient to def-erminr: cer l -a i ;? of the response parameters in 



s p e c i a l '  cases, a n d  it is u s e d  a s  a q u a n - t i t a + i v e  e v a l u a t i o n  of t h e  

r e p  r e s e n t  a t  i on 

I t  is p r e s u m e d  t h a t  g r a p h i t e  is a rate i n d e p e n d e n t  mater ia l  . 

w h i c h  i s  t r a n s v e r s e l y  i s o t r o p i c  a n d  h i s t o r y  d e p e n d e n t ,  T h e s e  assurcp- '  

? i o n s  are, i n  f a c t ,  v e r i f i e d  b y  e x p e r i m e n t ,  Many p h y s i c a l  systems 

p o s s e s s  the p r o p e r t y  o f  h a v i n g  t h e i r  o u t p u t  d e p e n d e n t  o n l y  u p o n  t h e  

p r e s e n t  v a l u e  of t h e  inpu l . ,  I n  t h e  m a j o r i t y  o f  cases, h o w e v e r ,  t h e  

ou-1-pu+ o f  a s y s t e m  d e p e n d s  in some way upon  t h e  p a s t  h i s t o r y  o f  t h e  

i n p u t ,  F o r  i n s t a n c e ,  t h e  tempera- f -ur -e ,  a t  a g i v e n  i n s t a n t  of time, 

i n  a n  electric f u r n a c e  is n o t  o n l y  d e p e n d e n t  on t h e  c u r r e n t  f l o w i n g  

i n  t h e  h e a l - i n g  e l e m e n t  a t  - t h a t  i n s t a n t #  b u t  a l s o  on t h e  p a s t  h i s t o r y  

o f  t h e  elecl-ric c u r r e n t  a p p l i e d ,  

A ma-f -er ia l  i s  s a i d  t o  b e  r a t s  i n d e p e n d e n t  i f  t h e  s t r e s s  a t  

a n y  i n s t a n t  o f  t i m e  d e p e n d s  o n  t h e  d e f o r m a t i o n  h i s l - o r y , - b u t  not on 

t h e  ral-e a t  w h i c h  t h e  d e f o r w a t i o n  h i s t o r y  was e x e c u t e d c  

a l i n e a r  v i s c o e l a s t i c  material  w i  I I e x h i b i t  d i f f e r e n t  sSress o u < - p u t s  

f o r  + h e  same i n p u t s  when t h e s e  i n D u t s  are a p p l  i e d  a t  d i f f e r e n t  rates, 

G r a p h i t e ,  h o w e v e r ,  e x h i  b i t s  t h e  Same o u l - p u t  for a1 I i n p u t  rates s h o r t  

For e x a m p l e ,  

of i m p a c t  i n t e n s i t y ,  
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Be Graphite 

I , Genera I character i s t  i cs 

Graphite i n  i t s  natural form, was doubtless known t o  pre- 

h i s to r i c  man and may even have been put t o  use by some of the 

ancient c iv i l izat ions,  

found In the Natural History of Ferrante lmperato i n  1593 [I]*. 

lmperato cal led graphite ''graphio plomblnoOtr The name graphite was, 

The f i r s t  published reference t o  graphite i s  

however, originated by Abraham Gottlob Werner, The sc ien t i f i c  inves- 

t iga t ion  of graphite began toward the end of the eighteenth century. 

In 6799 Karl Wilhelm Scheele discovered that  graphite was mineralized 

coal, Al len and Pepys, showed i n  1807, that  charcoal, diamond, and 

graphite l e f t  the same residue a f te r  +hey had been burned, 

time much progress has been made, The crystal structure of graphite 

has been determfned. The thermal, mechanical, and atomic properties 

of graphite have been investigated, 

a r t i f i c i a l l y  and it has lent i t s e l f  t o  many applications I n  

Industry [ Z ] ,  

Since that  

Graphite has been produced 

Graphite is a form of pure carbon, Along with dtamond and 

charcoal it i s  one of the three forms of carbon found i n  nature. 

The difference between these three forms of carbon i s  that  diamond 

crystallizer cubically, charcoal crysta l l izes amorphously, and graphite 

crysta l l izes hexagonally [ 3 3 d  

The ideal graphif& crystal structure, as shown i n  Fig- 1 

Page 97, can be seen t o  possess a layered structure, As a consequence 

* Numbers i n  brackets re fer  to entr ies i n  the bibliography, 
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of the re la t ive ly  small distances between the carbon atoms i n  each 

layer, lr42A0, strong bonding exists between the atoms i n  these 

layers, The bonding between successive layers i s  much weaker due 

t o  the re la t i ve ly  large distances, 3.35A0, between these layers,, 

This results i n  the easy displacement of the layers re la t i ve  t o  

each other and accounts fo r  the f a c t  that  graphite i s  often used as 

a lubricant, 

Other consequences of t h i s  layered structure are evidenced 

by the pronounced anisotropy of many of the physical properties 

exhibited by graphite [4]. 

are ROW discussed i n  terms of  the r a t i o  of the rrweakrl axis t o  the 

"strong1! axisI In i t s  "strongt1 direct ion graphite i s  probably 

harder than diamond, For an ideal single crysta l  the anisotropy 

rat ios of hardness may be as low as 1/100 o r  even 1/1000, Graphite 

i s  extremely compressible normal to the network planes and anlsotropy 

4 ra t ios have been estimated t o  be 00 the order of 10 or  105e 

should be noted that  polycrystal l ine graphite consists of an 

The various anisotropy rat ios of graphite 

I t  

agglomeration of small crystals a t  various orientations, with, on 

the average, 20% free space o r  porosity, 

Aside from i t s  anisotropic properties graphite i s  colorless, 

tasteless, non-toxlc, and almost chemically inert, Graphite has a 

very low coef f ic ient  of thermal expansion along with the f i f t h  highest 

thermal conductivity of any material and it i s  a good conductor of 

e lec t r i c i t y ,  Unlike most materials the strength o f  graphite wlll 

increase with temperature t o  a t  least 25OO0C0 

the highest strengths per u n i t  weight of any material, and a t  

Graphite has one of 
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temperatures above 160OoC S t  Is superior t o  any known metal or  

ceramic,, 

2, Graphite as a Material with Memory 

Most materials have mechanical properties which are in  some 

manner, dependent upon the past history of some mechanical variable 

c5& A material of this type i s  commonly described as a materlal 

with msmury, I f  t h i s  materia6 exhibi ts some mechanical property 

which fs inf luenced t o  a great extent by events which have occurred 

I n  d-hb recent past, and i s  influenced t o  a lesser extent by events 

which have occurred i n  the more distant past, then t h i s  type of 

material Os termed a mater ia l  with fading memory, Various types of 

materials are observed t o  exhib i t  various degrees of fading memory, 

and Indeed, materials wi th v l r t u a l l y  no memory are also commono 

An example of a material which lacks memory ef fects i s  an 

e las t i c  material, The present mechanical state of  an e las t i c  material 

Is not dependent upon i t s  history of deformation, but only upon i t s  

present mechanical state, Thus, an e las t i c  material has mechanical 

properties independent of i t s  deformation history, A viscoelastic 

material often has a fading memory of deformtion, since deformations 

which have occurred in the fa r  distant past might have l i t t l e  

influence on the present mechanical state of the material, as compared 

with deformations which have occurred in  the recent past and which 

have great influence on the present mechanical state of  the material, 

In subsequent work presented in  t h i s  dissertation, functional 

relat ions which re la te the present state of stress i n  a material t o  

i t s  history of deformation w i l l  be dealt w i t h .  Functional re lat ions 
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of t h i s  type w i l l  be derived which, when applied to  graphite, wlll 

be capable of describing c W t a i n  mechanical propertles of the 

material, 

memory property, In  fact, graphite mlght be c lass i f ied  as a material 

with per fect  memory. Events, i,e. deformation histories, which have 

occurred long On the past may have as much influence on the  present 

s ta te  of strass as events which have recently tak4m place, 

A t  room bmperature, graphite does not exh ib i t  the fading 

The physical processes taking place within graphite, which 

are general i y  thought t o  be responsible f o r  t h i s  perfect  memory 

property, are c lass i f i ed  as p l a s t i c  ylelding phenomena C61, L71, C81. 

Plas t ic  y ie ld ing occurs i n  graphite a t  even the smallest s t ra ins  

contr ibut ing to  the y ie ld ing of the material, and the e f fec t  of 

these s t ra ins  will be f e l t  for  a l l  t jmeQ This 1s the j u s t i f l c a t l o n  

for c lass i fy ing graphite as a material with perfect  memoryo 

also be noted t h a t  r o o m  temperature graphite, unlike materials which 

eixhfbit fading memory for  h is to r les  which do not  y i e l d  the material 

and are c lass i f ied as e last lc -p last ic  or  elastic-viscoplastic, never 

exhibits the fading memory property. 

I t  should 

3, Qua l i t a t i ve  Mechanical Response of Room Temperature Graphite 

The qua l i t a t i ve  characterist ics of the uniaxial  stress- 

straOn relation for room temperature graphite as shown in  Fig, 2 and 

as described i n  [IO], [ I t ] ,  [IZ], [13], [ I 41  are now described, 

I t i s  evldent, from Fig, 2, t ha t  the stress Is some monotonlc 

increasing continuous function of the s t r a i n  so long as the load i s  

appl led monotonical lye This implies t h a t  along the  curve , 

7-r = C E P ,  ( 1 , l )  
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where fs the stress, is the strain, and f i s  a monotone 

Continuous function of i t s  argument. I f  the specOmen under consider- 

at ion experiences a reversal of the applied load a t  point A on the 

path c I the materia I w i  I I exhibl t B permanent set E (A\ when the 

load has bean comp le te l  y removed. The permanent set i s  a f UnCt ion 

only of the maximum s t ra in  achieved prOor t o  the unloading, 

)c 

I .29 

where 9 
Is the assumptton that  the permanent set E(&\ 
upon the strain a t  the point of unloading, 

point €3 on C , 

i s  a function of i t s  indicated argument, Impl ic i t  in (1.2) * 
is  dependent on y 

Slmllarly, f o r  some other 

An indication of the d8pendence of the permanent set on the s t ra in  

a t  the point of unloading w i l t  be discussed laier, 

If the specimen of graphite Is reloaded at the point with * 
coordinates (E CA1,O) (see Fig, 2) the reloading path w i i  I be d i f ferent  

from the Loading path, The important thing t o  observe In t h i s  case 

i s  tha t  the reioading curve has a shape d i f ferent  than that  of the 

unloading curve, and these paths do not coincide as they do fo r  an 

elast ic-plast ic material, Thus, we have a hysteresis loop formed 

by the unioading-reloading processo 

Consider a specimen of graphite En i t s  undeformed state, 

Then i f  it 'is loaded and 



a 

dE c i-,aj - > o  dt 
for the entire procgss, and fracture occurs at the polnt f , where 
E(F) Os the value of the strain at fracture, the path c w i l  I be 

followed until the strain E(F) Os attained, The form of the one 

dimensional stress-strain relation to the point of fracture w i l l  be 

derived later on in our analysis, 

Let the material be unloaded at some point A on c ,where 

This w i l l  result On a nonlinear unloadlng path, 

ofher point 8 on c , 
Unloading at some 

C I .6) 

wflI result in  another unloadlng path whlch wi l l  not, ’In gftabral, be 

parallel to the unloading path from point A on c 8 and 

Reloading at ( 

whlch may not pass fhrough the point 

09 w i l l  result, i n  general, in a nonlinear path 

on 6 , but W E  t I intersect 

C at some small distance, d , to the right of A ., 
If, however, upon reIoad1ng from (E*(8,,0) , the previous 

maximum strain €(8) i s  not attained, but the strain E(H) Is 

reached, then the unloadlng path from H to E (8) 8 as shown On Fig, 
)t 

2, i s  followed, A most interesting property of graphite i s  that It 

behaves llke an elastic material insofar as there Is no further change 
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in  the permanent set fo r  strains which do not exceed a previous 

maximum strain, In fact, Of we l e t  a specimen of graphite be loaded 

t o  E(&), unloaded t o  E (A), and then loaded and unloaded t o  these 

two points a to ta l  of n-times, the loop bounded by E (A> and E(A) 
w S l  I then be traced out n-times. 

considered an e las t ic  material In the above sense. 

* 
# 

For t h i s  reason graphite may be 

O f  the mechanical phenomena observed On graphite one of  

The most s ign i f icant  i s  Sfs rate independent behavior. A l l  unlaxlal 

boading programs, short of impact Intensity, which achieve a given 

f %xed s t ra in  w i  1 1  produce the same stress-strain curve 

Consequenfly graphite i s  c lassl f led as a ra te independent matertal, 

The condition of ra te independence automatically rules out the 

poss ib i l i t y  of observing any time dependent phenomena such as creep 

c 

o r  stress relaxation in  graphite, Consequently, and without any loss 

In generality, a convenient uatlaxlal loading program may be chosen 

t o  represent any actual uniaxlal loading program, 



10 

P 1 ,  MECHANICAL MODELS 

I n  an attempt t o  better understand the mechanical properties 

of room temperature reactor grade graphite, several mechanical models 

w l  II 6 be constructed, These models are presented here In order t o  

obtain an i n t u i t i v e  understanding of the mechanical propertles of 

graphite. 

vantages and disadvantages, 

Os that  they are one dimensional, 

developed within the framework of the incrementa'l theory of plasticity 

which reduce t o  the equations obtained fo r  the one dimensional 

The models which w i l l  be described below have, various ad- 

A disadvantage common t o  a l  I these models 

Three dimensional re lat ions can be 

mechanical models - an interesting method of dofng t h i s  i s  given by 

I wan CI 51- Three d imensiona 6 models have the d isadvantages of not 

appealing t o  our in tu i t ion,  being d i f f i c u l t  t o  construct and yielding 

unweildy equations, 

another In that they may b8 constructed using only two elements, the 

spring element and the f r i c t i o n  element [9], Ci61, [ l 7 l 9  

The models which follow are s imi lar  t o  one 

The spring element Os defined as that element whose defor- 

This mation, a t  any time, i s  a function of the to ta l  applled force, 

element i s  p ic to ra l l y  represented i n  Fig, 3 ,  The applied force Os 

denoted by A and A i s  the length of the spring a t  the present 

time, Let R' be the length of the spring I n i t i a l l y ,  o r  the length 

of the spring when A=O Our  de f in i t ion  requires that, 

where E=.&-k' 'is the elongatlon, 



For the special case when ( 2 , l )  represents the applied 

force as a l inear functfons of the elongation, the spring element 

becomes the usual Hookean element, The following expression des- 

cribes the Hookean element, 

(2,2) A =  kE 

where k Is cat led t h e  spring constant, 

The f r i c t i o n  element, or f r i c t i o n  block, i s  p ic to ra l l y  

represented I t a  Fig, 40 

St ,  Venan? element, 

less than the maximum possible force between the block and the plane 

It rests upon (*he c r i t i c a l  value b ) #  then the appl ied force w f  I I 

not be of su f f i c ien t  magnitude t o  move the block, This may be ex- 

pressed by means of the f o l  lowOng reIatOons, 

The f r i c t i o n  block Is sometimes cal led the 

I f  the magnitude of the appl led force A Os 

The followllng model has been constructed i n  order t o  g i v e  

a qual i ta t ive description of the hysteresis loop exhibited by a 

graphite specimen when continuously loaded i n  tension and compression. 

The mode! consists of three elements, two elements being Hookean and 

the other a f r i c t i o n  block, This Os i l l us t ra ted  i n  Fig, 5 ,  

Let E, be the deformation of the spring with constant k,,  
and l e t  E, be the deformation of the spring with constant k2, 
The to ta l  deformation w0 I I be E 0 where 



The mathematical descript ion of t h i s  deformation Os given by the 

r e  I a t  i on 

The deforrnatlon 

'is given by the fol lowing description, 

may be determined by integrating 

These properties are represented by the stress-stra 0 n d 0 agram in 

Fig, 6, t t  can be seen from Fig, 6 that  when the graphite sample 

i s  loaded In tension the stress-strain curve w i l l  fol low the path 

OF as the spring wOPh constant k deforms and the lower ele- 

ment remains stat ionaryo The instan? pofnt F i s  reached the 

c r i t i c a l  value 

w i  I 1 begin t o  move, t rac ing out the path F$ 
applied load i s  removed a t  potnt 6 , the lower element w i l l  once 

again become stat ionary and preserve i t s  maximum def lect ion 

it Os, of course, assumed tha t  the force of the spring wi th  constant 

k, Os less than b The path Bc w i  I I then be traced as The 

b i s  at-falned and Phe lower element of the model 

D f, however, the 

spring wi th constant k, returns t o  the unstressed state, A t  t h i s  

point, the t o t a l  displacement Os the displacement On the lower 
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element, I f  the material Os reloaded, the path i s  again 

fo l  lowed and continues a long 0 D 
If ,  instead of assuming the spring t o  be linear, it Is 

assumed tha t  the general re la t ion  ( 2 ~ 1 )  holds and the general rela- 

t ions corresponding t o  (2,3) are obtained, a stress-strain curve 

analogous t o  the one shown On Fig, 6 i s  obtained, This curve Is 

shown In Fig, 7, The interpretat ion of thOs behavior Is analogous 

t o  tha t  given above f o r  the l inear mode(, This model i s  a bet ter  

descript ion of the propert ies of graphite than the l inear model, 

I t  can be seen tha t  t h  0 s mode6 has the advantage of not 

allowing fo r  any time dependent properties In  the material, 

the material represented by Fig, 6 or Fig, 7 w i l l  not exh ib i t  the 

propertles of  creep, stress relaxation, o r  dependenceupon the rate 

Thus, 

o f  loading, A mayor drawback of t h i s  model i s  tha t  while it may bet 

capable of  quant i ta t ive ly  dupl icat ing a given stress-strain cutver 

for graphite by defining the appropriate function I n  [Ll), it does 

not predic t  a permanent set  for any appl ied stress less than b a 

Thus, one of the most dist inguishing propert ies exhibited by graphite 

'is beyond the descr ipt ive powers of th is  simple model, 

A mode! proposed by Jenki'ns [6]  fs now constructed, Jenkins 

observed tha t  ?he stress-strain a w e  for polycrystal!  ine reactor 

grade graphite a t  room temperature Is parabolic for smal! strains., 

He then cons-tructed a modei which yielded a parabolic law, This 

theory d id  not, hoWever, predic t  a method for determining the value 

of  the quirdratlc coeffOcient, 
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Jenkin's mode6 Os based on the assumption that when 

graphite Os subjected t o  stress cycllrrg under low compressive 

stresses the applied stress Is large enough t o  only produce p las t i c  

deformations On j u s t  a few isolated par-ts of the structureo 

mechanism of deformation i s  assumed to be p last ic  yielding, 

p last ic  deformatioa i s  lOmfted by a restraining e las t i c  matrix, 

The parts of the material undergoing p last ic  deformation are 

imbedded i n  the restraining matr ix  and these parts cease t o  deform 

as soon as the applied stress within each matrix Os decreased below 

the yOe d stress 

The 

This 

b I of these areasq 

The mechanical model f o r  t h i s  type of deformatton i s  again 

mads up of a series of f r i c t i o n  blocks and sprlng elements. 

However, each block i s  backed by a spring, as shown On Fig. 8, 

the block w i  i I move only when the appl led force A exceeds the 

f r i c t i ona l  force b 
the e las t i c  reaction On the backing spring i s  b u f t t  up u n t i l  it 

reaches 

Is an extension of the model On Fig, 8, 

f r i c t i o n  blocks alternating with equal backing springs, 

seen I n  Fig, 9, as the applied force A increases more blocks begin 

t o  move with each block building up a back stress in  I t s  backing 

spring, I f  the applied forw i s  removed, the f i r s t  element w i l l  

relax only when the stress In  the backing sprlng can overcome the 

f r i c t i o n  force of the block, 

Here, 

Here 

The motion of the block w i  I i then cease when 

A -b ,, The general izat ion based upon the above assumptfon 

It Os a series of equal 

As can be 

Applying this, Jenklns obtains the relation, 



E= klA+k,A2 (207) 
& 

where kl= E i s  the inverse of Young's modulus a t  i m f  Onltesimai fy 

smal I strains, The quadratic coeff icient, 

tatevely determined from Jenkins' theory. 

k, , cannot be quanti- 

Jenkins also presents an 

eQwbt"ldh which describes the unloading pa th  f o r  smaII s t ra ins i n  

t W m S  of a quadratic law0 

Woo6 ley [ 8 ]  has obtained a mathematical representation 

which predicts, accurately, the loading path of graphite, Whereas 

Jenkins' model Os v a l i d  only fo r  small s t ra ins (up t o  0,258) Woolley's 

model provides a good f i t  f o r  a l l  values of strain and predicts a 

f i n i t e  compressive strength, 

descript ion of the unloading curve, 

W o o l  ley, however does not attempt 

Woolley assumes that  a given specimen of graphite w i l l  con- 

t a i n  N, dislocations distr ibuted throughout i t s  i n te r l o r  when a 

given stress Os applied, As In the previous mechanical model, each 

dis locat ion can be thought of as being represented by a f r i c t i o n  

block, Since the movement of each dis locat ion Os l imi ted by a 

restraining e l a s t i c  matrlx each f r i c t i o n  block w i l l  be backed by a 

Hookean element, Let the y ie ld  stress of each dis locat ion be b , 
It then follows tha t  a given dis locat ion w i l l  remain stationary 

when the force on tha t  d is locat ion i s  less than b , When the force 

on the dis locat ion i s  greater than b each dis locat ion w i l  I move a 

distance k Taking the average over a l l  the dislocations I n  the 

specimen by defining an appropriate d is t r ibu t ion  function, Wool ley 

obtains the relat ion, 
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The constants  y and E, 
strain r e l a t i o n  for graphite, t h e  method preparaa lon  of t h e  graphite  

Specimen and i t s  degree of preferred orlentation, 

depend on t h e  elastic rnodu I i of t h e  stress- 
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1 1 1 ,  MATHEMATICAL PRELIMINARIES 

A, Constitutive Functlonals 

Let a graphite specimen 

menslonal Eucl !dean potnt 

of elements, which are ca 

three d 

made up 

G occupy a specif ic region i n  a 

space, We may consider G t o  be 

led part ic les of G Let X be 

the position vector of a generic par t i c le  of G in Euclidean 

space, 

time ? t h e  generic par t i c le  x w i l l  be a t  the place whlch has the 

Now i f  6 i s  deformed I n  an arbi t rary manner, then a t  some 

posSt%on vector X The motion of the generlc par t l c le  from 

t o  X Is denoted by, 

Thus, the function % defines the deformation process, Assume that 

a t  the present time t , the state of stress 6(t) a t  a materlal 

polnP Is a function not only of the deformation gradients a t  t ime )c I 

bu t  also a function of the valuer of the deformation gradients a t  a l l  

times priior t o  t ,, Here the deformation gradient F(3(:,7) ‘is 

def in& as the gradient of %(x,p) and i s  a second order tensor, 

In coordinate notation the deformation gradient a t  time k may be 

wr i t ten asp 

Thus, it i s  assumed that the material response I s  dependent upon the 

ent i re  history of i t s  deformation gradients and a material of t h i s  

type Os cal led a history dependent, or  a memory dependent material 

C181, C19Io 
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The present state o f  stress i n  graphite i s  expressed as a 

i s  e x p l i c i t l y  function whose value a t  any point  X: a t  time t 
expressed as the resu l t  of some operation upon the i n f i n i t e  set of 

values assumed by the deformation gradients over s o m q  continuous 

function of time, Such an expression i s  termed a functional, Hence 

the present state of stress On our material may be wr i t ten as a 

functional of the deforma'tion gradients F over the time interval 

-m<?<t 
Os Kndlcated by 

Using the notation invented try V o  Volterra [ZOI, t h i s  

Let us assume that  our graphite specimen has been physically 

standardized for use a t  sane time, say ?= 0 In  our case this 

might correspond to  the tlme a t  which the specimen of p r y o l f t i c  

graphite was removed from I t s  oveno 

const i tu t ive equation (3,3) as, 

This allows us t o  rewrite the 

The pr inc ip le  of obJect iv l ty requires that  a l l  const i tut ive 

reIatOons be independent of the observero 

ple allows (3,4) t o  be rewri t ten On the form [18], 

Application of  th is  pr incf-  

where n(b) Is the Piola-Kirchoff or rotated stress tensor, R i s  

the ro ta t ion  tensor obtained by a polar decomposition of , The 
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polar decomposition theorem states t h a t  F=RU where U the 

r i gh t  stretch tensor, Os posit ive de f in i te  and symmetric an8 the 

rota t i on 

u2 Is 
tensor, 

tensor f? i s  orthogonal, E i n  (3,5) i s  defined by, 

(3.61 

cal led the r i g h t  Cauchy-Green tensor and Os the s t ra in  

The above res t r l c t lon  due t o  obJectivlty, replaces arb i t rary  

functional dependence upon the nine components of F by arbi t rary 

functional dependence upon the s i x  components of , since IS 

symmetric, 

The const i tut ive re la t ion (3,3) can be taken as the 

de f in i t ion  of a simple material, 

simple I s  an assumption of a very general nature. 

matertal theories are subsumed by the theory of simple materfals. 

For example, the theories of l inear and nonlinear viscoelastfcl ty, 

The assumptlon that a materfal i s  

indeed, most 

the theory of dislocati-ons and various special theories are derivable 

wi th in the framework of +he theory of simple materials, 

B, Rate Independence 

Thus f a r  the material has been allowed to  be dependent upon 

Its ra te of deformation, 

one can conclude that  while the stress may be dependent tipdn the 

deformation gradients it i s  no+ dependent upon the ra?e a t  which 

the deformation Is executed, This Is analogous to the theories of 

classical e l a s t i c i t y  and p las t i c i t y  where t h e  rate of deformation 

does not Onfiuence the stress. 

Is applied to the const i tu t ive re la t ion  (3-51 certain simpli f icat ions 

resu I t, 

By observing the properties of graphite 

I f  the assumption of rate Independence 
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f n  order to make the hypotehsfs of ra te independence exp10- 

c i t  i n  the const i tut ive re at ion (3,5) the s t ra in  history 

must be speci f fed In terms of 1 t s  path i n  

traversal of t h i s  path, 

the components of  the s t ra in  tensor, 

EIZ),Z>O 
E -space and the ra te  of 

E -space i s  defined as the space formed by 

Following the theory of ra te  independent material as deve- 

ioped by POpkOn and R l v l l n  [21], the arc length 3(?) whlch has been 

traversed up t o  time 6 may be defined by, 

This function increases monotonically f o r  ai6 admissible inputs E(T>. 

The f le ld  path i n  & -space i s  described by giving the dependence of  

E parametrically upon the arc length, 

material was physical ly  standardized a t  

a t  zero strain, l,e, E@)=O, and S=$ when ?=t , 

it has been assumed that  the 

r=c), thus aS 1 paths begin 

A rate independent materiai described by 43,5) may be 

wr i t ten as 

for a l l  transformations 

where S increases monotonOcaIIy in  time, The function 13-71 is  

obviously a time invariant function, Thus we may write, 



s =O 

I f  

E(O)=8 

E(S) Is di f ferent iab le a t  each point on the s t ra in  path and 

then (3,101 can be wri t ten as 

Due t o  the fac t  that  a ra ie  Ondependent materiaf does not 
i 

exhib i t  any e x p i l c i t  dependence upon time, It i s  i n tu i t i ve l y  clear 

that  the const i tut ive re la t ion (3011) w i l l  not allow fo r  any time 

dependent propertles such as ageing effects, creep recoveryv or 

stress relaxatKon, 

I t  Is easy t o  show the valOdOty of the above statement, 

Consider fo r  the moment an arb i t rary  rate independent materlal whose 

const i tut ive equation can be ei ther (3,101 or  (3,111 On as much as 

(3,101 and (3,11) are equivalent, Now a matertal obeying (3,101 i s  

def f ned 

materia 

that  i f  

chem 0 ca 

w i l l  be 

t o  lack ageing ef fects if the mechanical properties of the 

In i t s  undeformed state do not change In time, This implies 

ageing ef fects  are present they must take the form of 

o r  structural changes i n  the material, since by C3-7) S(%') 

zero f o r  a l l  times a t  which no strain Is applied, Thus, 

there can be no change in the state of stress In the undeformed mater- 

i a l  since there i s  no input to the material in  I t s  undefonned state, 

This means tha t  the const i tut ive equation (3,101 w i l l  not allow f o r  

ageing effects, because i n  (3,IO) a non-zero input Is required t o  

produce a non-zero output, 



22 

A material Os said t o  lack the property of stress relaxa- 

t i o n  if  a f te r  the removal of an applied s t ra in  an instantaneous 

stress recovery Os now fol  lowed by a gradual stress recovery, Me 

w i l l  show here tha t  there can be no stress reIaxatIon a t  constant 

applied strain, 

i s  constant the change In  the s t ra in  with respect t o  the +?me variable 

wil I vanish and the a r c  length wil l  remain constant, That i s ,  since 

vanishes for any constant strain input, there can be no fur- 

9t i s  obvious from 43,7) that  i f  the s t ra in  input 

I dE 
dT 

ther Increase On the arc length, Thus, i f  the material fs loaded t o  

a f ixed value of  s t ra in  and then, a t  time bo 8 held a t  t h a t  f ixed 

value untO6 t , the equalfty 

must be sat is f ied f o r  a l l  =s, provided that  no further s t ra in  Is 

applied, Thus, it has been shown that  any rate independent material 

exh ib i t  the property of stress relaxation under w i l l  not be able to  

constant strain, 

A materia Os said t o  lack the creep recuvery property i f  

upon remova I of an appl led Sfress an itnstantaneous s t ra in  recovery 

Is not followed by a gradual s t ra in  recovery, In  order t o  dlscuss 

the phenomenon of  creep recovery It i s  necessary t o  have a stress 

input, Let us, therefore, assume tha t  the constitutive re la t ion 

43,10) may be inverted, In this case we may write (3,IO) In the 

form, 

(3-13) 
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The arc length must now be redefined Of the stress i s  t o  be the 

Input. Since the arc length Is defined on tha input space It must, 

i n  th i s  case, be defined on the stress space i n  order that  (3.13) 

. be consistent with (3,10), Thus the arc length Os defined by, 

where as I n  the previous case an inner product operation Os indicated, 

With t h i s  de f in i t ion  and the const i tut ive re la t ion (3,133 lit can be 

shown that the material will not exhibi t  any creep recovery proper- 

ties, A l l  that  need be done Os to follow verbatim the discussion on 

stress relaxation, 

C, Functional Approximations 

The s t a r t  of the twentieth century saw certain Investlga- 

*ions made by various French mathematlclans l n h  the nature of 

functionals, The most prominent of these were M, Frechet, h is  

principal advisor J, Hadamard, and R, Gateaux, They showed that 

under ce r ta in  conditions a functional cou ld  be represented as a sum 

of a series of mult ip le IntegPals, Frechet [22], C U I ,  i n  particular, 

showed tha t  i f  i s  a Clnear functional defined on a set of 

functions which has the IjPopeey that I f  the functional 

converges t o  u$) whenever pn converges t o  uniformly, then u 
can be represented by a Fourlier series, 

V, Volterra [24] used a representation s f m i  l a r  t o  

Frechet's and showed how history dependent phenomena, represented 

by functlonals, give r i s e  t o  nokt inear constitutive equations which 
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may be represented as sums of mult iple integrals, Volterra then 

appl led h i s  results t o  history dependent physical processes in 

elast ic i ty ,  electromagnetism, apd other areas of physics,, 

Green, Rlvlin, and Spencer [19], [25], [26], presented a 

f a i r l y  rigorous treatment of three dimensional const i tut ive equations 

fo r  materials with memory, 

dependent upon the en t i re  history of the displacement gradients, 

They then represented the constitutive functional, using Frechet's 

theory, by means of a sum of mult iple integrals of the deformation 

history wOth certain material functions as kernels, I t  was also 

assumed that  the material was a t  rest  before time 

the domain of the const i tut ive funl=tiona( t o  be In  the space of 

bounded deformation histories, 

They assumed that  the stress tensor was 

k = 0 , requiring 

n [27], by makOng use of the Stone- 

theorem [28] ,  have shown that any con- 

uniformly approximated on a subset of D 
functionals from L , where D i s  a 

topological real Hausdorff vectof space of tensor-valued functions 

and L i s  a subspace of  functfclnafs which distinguishes elements 

i n  D , 
L e w  E291 improved upon the resutfs of Chacon and ROvl in 

through a more subtte use of the Stone-Welerstrass theorem, Here the 

are less res t r i c t i ve  than 

n particular, Lew shows that  

continuous In the weak 

Chacon and Riv I 

Weierstrass approximatlon 

tlnuous functional can be 

by a polynomial On linear 

conditions lmposed upon the functions 

those imposed by Chacon and ROvlOn, 

the functional must only be u n l f o n l y  

topology defined on D by L , 
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Ta T, Wang [30] derived the integral representation by 

means of Gateaux's theory of functiona I representations [3 11- 
Gateaux's method seems to provide an adequate description of the 

phenomenological processes taking place within the material while 

at the same time yielding the standard form of the integral 

approximation, 

In  the following section we will present a particularly 

simple formal method for deriving the integral approximatton, 

D, The Black Box Problem 

The black box (Flg, !E)) is defined as anything which acts 

upon an input and produces an output [32]a It i s  not known why 

boxes are black, buf as Wiener [33] states, "boxes are ex officio 

black," The black box problem was first formulated, fn its general 

form, by electrOcal engineerso An electrfcal engineer Is given a 

sealed black box containing an unknown assembly of electronics, 

The black box has terminals for applying inputs and other terminals 

for OUtpUtSa The engineer may then apply any type of electrical 

input he can generate and then measure any output his equipment i s  

capable of measuringo H i s  problem Os to determine the contents of 

the black box by this method, 

Problems of this nature are of fundamental importance In 

many scientific fields., 

box problem i s  being carried out i n  the life scienceso 

The anaiog of the black box problem i n  the mechanics of 

In fact, much of the research on the black 

continua can be posed as follows, Suppose we are given a black piece 

of some unknown mater8al, then the problem Is to determine the 
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nature of the material by applying certain inputs (stresses, strains) 

and by measuring the corresponding outputs (strains, stresses)s 

To be more specific, we must determine the const i tut ive equation of 

the unknown material by experiment. 

Let US take an unknown, possibly nonlinear, material which 

i s  represented by the black box i n  Fig. IO. 

t o  the material Os the rate of change of s t ra in  with respect t o  the 

a rc  length and that  the corresponding output i s  the stress, This 

means tha t  the const i tut ive re la t ion (3,111 descrlbes t h i s  process. 

In genera I, the present state of stress of a nonl Onear materia I depends 

upon the s t r a i n  ra te history On a nonlinear manner. 

Assume that the input 

The history of the s t r a i n  ra te can be expressed On terms 

of a system of quantit ies, whlch may be i n f i n i t e  On number, and whtch 

ex i s t  a t  the present time. No assumption i s  made concerning the 

nature of these quantltles. A l l  that  Is being said i s  t ha t  the 

history of the input t o  the material Os express'ible ?n terns of 

certain quantlt les, Since the material Is nonlinear, the present 

output, or  the s tate of stress, may be expressed On terms of a 

non.6inear operation upon t h i s  set of quantities, 

Let us see what can be said about the re la t ion between 

input and output without any further assumptions, 

been studied by many authors [33 ] ,  C341, C351, C36l0 

This problem has 

We have asserted tha t  the s t ra in  rate history %Cs) can be 

described by means of the quantities, 
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evaluated a t  "timeT1 2 
wri t ten as 

Thus the present state of stress may be 

where G denotes some nonlinear operation, 

Let {hic5)3 be any comp I ete orthonorma I set of functions, 

i .e, 

E ( s )  a t  any time i n  the past may now be expressed as an expansion 

In these orthonorha I f unct ions, 

00 

(3,181 

where wi(41 Is the coeff ic ient  of the f-th orthonormal function in 

the expansion, Since the set {hi (S i s  composed of known functions, 

the coef f i c i ents 

remotest past up t o  the present time, 

{w;t$g comp I ete I y descr I be CSP from the 

Thus, i f  the coeff icients are 

known we can reconstruct the ent i re  s t ra in  history. 

The unknowns, In t h i s  case being the coeff icients b/;($) , I s  
may be determined as follows, Mu l t i p l y  (3,181 by \7j(S) and obtain, 

Applying the orthogonality property (3,171 and integrating (3,191 

over S yield&, 
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In general {w;($$ w l 6  6 be an i n f i n i t e  set, 

NOW assume that the non6 ?near operation G in (3.16) Is a 

general polynomial i n  the w; ( ) . Thus the Piola-Kirchoff stress 

tensor may be wri t ten as, 

Here the coeff Pclents b; c;j 3;j , 0 p j 3 . . . l  completely 

describe the nonlinear operation, and we have the stress state in 

terms of the s t ra in  rate history, Now substitute (3,201 in to  (3,211 

and the polynomial becomes, 

The order of integration and summation 'is now interchanged t o  obtain, 

(3,239 

We may, however, wr i te  the summations as, 

43,241 
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Substituting (3,241 in to  (3,231 yields, 

The nonlinear system Is now completely described by The ksrPneIs 

kn(5t,...)5 n) If it assumed that  the stress state of the 

material Os zero a t  t = 0 I then the constant term, a , must 

vanish in equation (3,259 and equation (3,261 Os obtained 

E, The Relation t o  Plast ic  Work Hardening 

The arc length parameter we have'been using may be com- 

I n  

Is decom- 

pared t o  the s t ra in  hardening parameter of p l a s t i c i t y  theory, 

the classical theory of p las t i c i t y  the to ta l  s t ra in  E;j 
posed in to  a p las t i c  s t ra in  

The e las t i c  strains are rela-bed t o  the stresses by Hooke's law, 

re la t ion  between the p las t i c  strains gij and the stresses are 

p;j and an e las t i c  s t ra in  Q.- 'J - 
The 

given by the const i tut ive re la t ion 

0 for unloading 

p.. =z 
9 

for  loading 

(3-271 

where denotes the devlatoric stress tensor, 
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Thus it can be seen that  i n  order to  make use of a conpti- 

t u t l ve  equation of the type C3,27) it becomess necessary t o  givg preclse 

meanings t o  the terms loading and unloading, especially for general 

three dimensional programs, 

(3-261 there Is no need t o  a rb l t ra r l  l y  define a process as a loading 

o r  an unloading process, 

involve the s t ra in  r a t e  have components which change sign when the 

direct ion of  straining i s  bsversed, 

In our theory, as can be seen from 

This i s  Because the terms In  (3,261 which 

Thus the re la t ion ( 3 , 2 6 )  auto- 

matical ly takes care of  speclfylng whether o r  not a part icular process 

i s  a loading or anunloading process, Also each component of the 

s t ra in  rate matrix may change sign independently of the other com- 

ponents, 

the s t ra in  ra?e matrix change a r b i t r a r i l y  and a t  d i f fe ren t  times are 

possible wi th in the formulation (3-26) without havlng to define a 

indeed, processes i n  which the signs of the components of 

par t icu lar  process as an unfoadlng o r  a loading processv 

The p las t i c  s t ra in  hardening parameter Z Is defined i n  

terms of the p las t l c  straOn rate, 

The y ie ld  condit ion Is assumed to  be of the form, 

(3,291 

where the temperature Is not taken in to consideration, 
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A deformation process Is sald to be strain hardening if, 

A deformation Is defined to be a loading process when, 

The lioading condition may also be expressed as 
n 

I f  the onset of plastic f(ow 1s described by means of the 

von Mlses yOe6d condltlon, 

then the plast'ic stratn rate may be detenlned by means of the 

following relatlon 

(3,349 

where it i s  assumed that the material Os Oneompmsslble and 

independent of temperature, 

The above discussion of strain hardening plasticity points 

out the sirnilar3ty between the arc length parameter 5 and the strain 

hardening parameter Z , 

formulation (3,261 On that we have no need to define a process as 

being either loading or unloading, 

It also points out the advantage of our 

In (3,269 consider only the linear term of the expansOon, 

In th is  case the kernel function can be suitably chosen In  order to 
. I  



32 

achieve equations similar to those of strain hardening plasticity, 

In fact, I f  we work with only the plastic strains and devfatorfc 

tensors a theory equivalent to strain hardening plasticity can be 

obtained, I f  the kernel function i s  chosen to be a DOrac delta 

function a special form of strain hardening plasticity i s  obtained, 

The obJect of both the arc length and strain hardening 

parameters Os the introduction of some degree of irreversibility 

Onto the description of the mechanical behavior of the mater9al, 

consequence of this frreversibi II Oty i s  that a stress-strain curve 

A 

= f (E) cannot be retraced even I f  the variation of the strain 

E Os reversed, 

We have herep On effect, asserted that a given rate 

have its own Intrinsic time, 5 or Z fl 

by means of this time, which will In general 

natura I I y represent 

is, the constitutive 

me w i l l  be a more 

natura! representation of the materia/ than a constitutive equation 

expressed in terms of the actual time, 

independent materlal wf l 

associated with 'it, And 

be different from the ac ual time, we can more 

That the mschani ca I behav l o r  & the materia I 
equation expressed in terms of the 'lntrinslc t 
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A, The Straining Program 

I n  t h i s  section a one dimensional theory i s  developed 

whose purpose It Os t o  obtain a re la t ion between the scalar stress 

and the scalar strain, Thus, t h i s  theory i s  an attempt t o  describe 

the stress-strain re6atOon which Is obtained On the laboratory, 

This stress-strain re la t ion i s  obtafrled by gerformfng a simple 

uniaxial tension or  compression test, 

Wcl  i c  bs%-  i s  i B lustrafed %n.Flg, 2, 

The resutt  of Just such a 

in  order t o  completely descrlbe a one dimensional cyc l l c  

stress-strain relation, two s t ra in  parameters must be prescribed, 

The f i r s t  0s the maximum strain, A , achieved p r io r  t o  unloading, 

and the second i s  the permanent set E (A) I f  more than one 

unloading w i l l  be considered, then these two parameters must be 

prescribed fo r  each loading cycle, 

* 

Assume that  a rate independent material has been strained 

a t  some given rate 

the material from i t s  undeformed state 0 t o  some value of strain, 

If' , and tha t  th is  straining process has taken 

A , (see Fig, 21, The effect of this deformation process Is best 

seen by observing the stress-strain curve f o r  the material which 

begins a t  the o r ig in  0 8 and ends a t  point  A 
Instead of straining the material a t  ra te r , assume tha t  

the material had been strained a t  the rate r i  If t h i s  new defor- 

=Pion process also takes the material from i t s  undeformed state 0 8 

t o  the point  a , then the same locus of $tress-strain points, 
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obtaKned above by deforming the material a t  ra te r , would have been 

obtained, indeed, for a rate independent material, any straining 

program which deforms the material from i t s  undefoned state 

the point  

S'lmlbarly, f o r  the release of  strain, any rate p of re leaM of 

s t ra in  w %  II 6 be equivalent t o  any other ra te p of  release gf strain, 

This means the path between h and E (A) I n  Fig- 2, i s  independent 

of the rate of release of strain, Also, the restraining path w l  l 1 be 

rate independent and so on for successiv& processes* Therefore, 

without any loss in generality, the straining pragram, i l l us t ra ted  On 

Fig, 1 la, may be hypothesized for the cyc l i c  sft%%xWstra%n test, 

The straining program shown Pn Fig4 [Sa Os defined by, 

0 , to  

A , monotonOca6 ly,  w i  I I trace out the same unique path, 

1 

$ 

E ( H = m ?  O L Z _ b k  (4 ,  I ) 

where for our purposes It Os assumed that  

For %his program changes sign a t  4 and again a t  1 -  
B u i l t  i n to  *his program Is the condition tha t  the material w i l l  not 

return t o  i t s  undeformed state, when the applied load Is removed, 

The extension of the material, re la t i ve  t o  i t s  undeformed state, 

observed when the app% Ked' load has been removed i s  ca B led the 

permanent set, or the residua! deformat!on, This corresponds to the 

actual behavior of graphite which has been prevlously described, 
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In Fig, I l a  the re la t ive maximum s t ra in  occurs a t  7 s  '% * 
and I t s  value i s  The permanent set E i s  the value of 

the s t ra in  a t  % =  1 or 

Thus k represents thg frac+tan of the re la t ive maximum s t ra in  

which remains as the permanent set, 

l t  can be seen from 44,2) that  Of k were allowed t o  be 

unity we would have 

i n  the time interval +kt ? & 1 , This means that, independently 

of time, the value of the redative maximum s t ra in  would be retained, 

In short0 when k = i  the material experiences no e las t i c  recovery, 

If k were to vanish, then we would have from (4,2), 

This means that there wou6 d be no permanent set f o r  

the deformation couid be considered as CompIetely recoverable, 

Let us look a-t- some of the properties of the program 

By aquation f3 ,7)  the value of the arc length for 

&% and hence 

C4,1, t o  f4 ,4) ,  

. e  
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The value of the arc length parameter for  the release of 

s t ra in  process is, 

&r’= 

(4,111 

Note that  the sign of the square m o t  of fn 1 %  i n  

(4,9)’ was chosen so that the arc length would always be posit ive and 

hence would always be a monotonOc increasing function of time, 

the arc length t o  be otherwise would be meaningless, 

release of s t ra in  process the arc length i s  given by (4,121 when 

For 

Thus for the 

where k i s  less than one and positive, Rekriting (4,121 we have 
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For the re--straining process we have 

and 

A t  th is  point 1 can be written for the cases of 

straining, release of strain, and re-straining, 

(4, t 7) 

For st ra in  release, (4,181 

For PQ-stra 0 n 0 tltJ (4,191 

Thus given a monoforaic increasing straining process and 

a monotonic decreasing release of strain process, only the re la t ive  

maximum strain parameter, and the value of the permanent set, 
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m!/Z , need t o  be given i n  order t o  completely describe the history 

of the deformation process, 

k 
B, Linear Term Analysis 

This means that  when we specify m and 

we specify the s t ra in  history, 

Let us look a t  the previously derived integral approximation 

(3,261, We assume that the mate r ia l  under consideration 'is stress 

free I n  % t s  undeformed state, From (4,171, (4,181, and (4,191 we see 

that i(5)=1 
In order fo r  (3,261 t o  accurately describe a program of the type 

for straining and E&l=-'l f o r  the release of strain. 

shown In Filg, I la ,  it should feel the ef fects of the release of strain, 

The even ordered terms I n  (3.261 w i l l  not, however, feel these effects, 

fee, the even ordered terms In (3,261 cannot t e l l  the difference 

between a straining and a reiease of s t ra in  process. 

t o  conclude that  Of we wish t o  accurately model the mechanical 

Thus we are led 

behavior of graphite by means of (3,26), the even ordered terms On 

(3,26) should be omttted, 

There ex is ts  a strong poss ib i l i t y  that certain types of 

graphite may need, aside from the l inear term, higher terms On order 

t o  accurately describe -the behavior of graphite under cyc l i c  

straining programs, HereB howeverB we week t o  ascertain as t o  

whether o r  Rot the l inear term In  (3,261 Is capable of describing 

the qual l t a t i v e  mechanical properties exhibited by graphite under 

cyc l i c  straining programs. 
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The strain history Os known from experiment and therefore 

be found by applying (4017), (4,18), or <4,19), 

kernel function must be determined, Equation (4.20) states that an 

E (51 may 

Now the form of the 

increment in strain, dEcs) produces an increment in 

d7\: ($1 = k C S , ~  E W  

which i s  Ondependeat of the values of the strain outs 

interval (S,S+dS) 

stress 

(4.21 1 

de of the 

From our experience with graphite we can make a good guess 

as to $he form of the kernel function. If k&'p Is constant, then 

we have, 

nc$,= 
where k' is a constanta 

stress Is a function of the strain, 

This Os a fheory of elasticity, since the 

Now O f  kc$') Os a DOrac delta function, then we obtain, 

@ Where 

city, where the stress i s  a function of the strain rate, 

and (4,231 are inadequate for our purpose, 

i s  a constant, This i s  a form of work hardening plastl- 

Both (4-22) 

We ROW assume the form of the kernel function 

will be used In the subsequent analysis, In the discussiolrt tha$ 

immediately follows, one must always keep in mind that while the 

variable, S , Os time-like due to the monotonic property of '3 , 
it i s  a function of the applied strains and not of time, 

B ( 6 ,  which 
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The form of the kernel we wlll employ to mode6 the cyclic 

one dimensional mchanOcaI response of graphite is, 

where: n i s  the number of compiete reversals On the straining pro- 

cess atxd 3 i s  the value of the arc length parameter which corres- 

ponds to the previous maximum strain experienced by the graptirte 

A 

specimen, The motivation for choosing the kernel function (4,241 'Is 

due to the consideration of two facts. First, Woolley [8l showed 

of graphlte on the previous 

Onto the constitutive equaP 

and 9 in the const 0 tutl ve 
h 

that a one dimensional constitutive equation In exponentSaI form was 

able to describe the uniaxial loading response of graphite exceedingly 

well, Second, the kernel function must be chosen so that the dependence 

y attained maxlmum st ra in  Os incorporated 

on, This Os accomplished by including n 

equation, 

A t  this polnt let us see how well or poorly some other kernel 

functions, similar to (4024>, model the mechanical behavfor of graphite, 

Also, by analyzing the proper'fiss of these kernel functions we shall 

see where they fail in describing the mechanical properties of graphite 

and obtain an 'indication as to what is needed On order to accurately 

describe graphitess mechanical behavior, It Os partly by analyses of 

th%s tybe that the kerneII functfon (4,241 was chosen, 

Let us consider a slmpKffSed form of the kernel function 

(4,251 
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With t h i s  choice of kernel function the l inear const i tut ive re la t ion 

(4,201 fo r  straining, becomes 

e 

where we have used ts)=+ 1 for straining, BY carrying out the 

operatlon lndlcated by (4,261 we obtaOn 

it i s  a t  once evident that  (4,271 i s  essentially the same 

resu6t as (2,8) obtained by W o o l  ley from dfslocatlon theory consider- 

ations, 

form of (4,271 Os art excellent f i t  t o  the strailnlrig compressive 

Wool ley has shown tha t  a stress-strain rellatFon having the 

stress-stra 0 n data f o r  graph 0 te, 

Let us see how we1 I a representattot9 of the type (4,271 

w l  I I represent the 

of s t ra in  process, 

mechanIcaI behavior of graphite fo r  the release 

For the release of s t ra in  we have 

14,28) 

In (4,281 the term corresponds t o  the release of 

s t ra in  process and %=92 when F= ‘12 , Integrating (4,281 

and combining terms yields, 
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While,, as we have noted above, (4,271 w i l l  accurately 

describe the stress-strain curve f o r  graphite fo r  the ' in i t ia l  

stralnfng, the counterpart of (4,271 f o r  the release of s t ra in  pro- 

cess (4,29) i s  not an accurate description of the observed phenomena, 

The reason f o r  t h l s  i s  shown i n  Fig, 12, 

s t ra in  release curve intersects the stralnlng curve well above the 

In  Figo 12 we see that  the 

stress axis, This Is a phenomenon which i s  never observed In graphite. 

Thus we conclude that  the kernel function 44,25) f a i l s  On describing 

the cyc l i c  straining behavior of graphite, 

The next kern06 function we cons,ider w i l l  also be seen t o  

f a i l  a t  descrlbing the mechanical response of graphite, Ot Is pre- 

sented here, however, because it Is f e l t  that a representation using 

t h l s  kernel function can be applied t o  many other materials, 

This kernel function is, 

The l inear functlonal (4,ZO) with the kernel function (4,301 can b e  

thought of as a l inear theory of rate independent viscoelasticity, 

Whereas a viscoelastic material w i l l  have a fading memory of 

deformation, our material has a fading memory of the rate of change 

of s t ra in  with respect t o  the arc length, 

With t h i s  kernel function we have f o r  the i n i t i a l  straining, 

(4,311 

0 

1- Q- 9 
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In order for tha,stress-strain relation (4,321 to have the properties 

exhibited by room temperature reactor grade graphite ft 'Is necessary 

that the second derivative of the stress be less than zero for all 

values of 3 bo , 
From the condition that the flrst derivative be greater 

than zero we obtain, 

This impbies that 

b>o  
For the second derivative we have 

(4u34) 

and fhfs inequality may be reduced ta 

The left hand side of the inequality (4,361 Os always greater 

%ban zero, Since b i s  positive and $ i s  monotonic increasing 

the right hand side of (4,361 tends to zero exponential 6y On 

Thus no mace how smadl the constant on the left hand side of 44-36] 

is, the r%ght hand side of the inequality wS6l eventually, with In- 

creasing arc ength, become small enough to violate the inequality 

(4,361, 

9 

This implles that at some point the stress-strain cuwe 
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described by (4,321 wO1 I become concaveo Actually the stress-strain 

curves for many materials, especially ductile metals, exhibit this 

type of phenomena, 

material does not exhibit phenomena of this type, 

that the stress-strain curve for graphite mains convex until frac- 

Graphite on the other hand, being a brittle 

It Is observed 

ture, 

SUI tab 

keme I 

It i s  felt that the kernel functlon (4,30) might provide a 

e representation for rate Independent dtactO le materials, 

At this point i n  our lnvestigatlon 1st us return to 

funcllon (4,24) which we have chosen to represent the 

mechanical response of graphid-e, FOP straining EtS) = + i q  n 

$ wi I I be zeroo Thus we may write 

T($,= c exp (-\OS) (+I) d~ = s" 0 

For the straining process we have, 

tlve of the stress may be written as, 

, and the first derlva- 

(4,381 

For graphite the first derivative (4,381 must aiways be greater than 

zero for a6 I 5 Thus for we have, 
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and -the constant C Os interpreted as the -tangent modulus of the 

graphite specimen a t  

s t ra  0 n curvso 

$= o I /OeO# a t  the o r ig in  of the stress- 

From the condition t h a i  the second derivative of the stress 

with respect t o  The strain, 

shots I d 

The va 

t o  the 

stra 1 n 

a lwap be negative we obtain the condition that  

ue of the constant can now be chosen so t h a t  the best f i t  

b > 

monotonic increasing straining portion of the graphite stress- 

curve Os obtained, 
c 

FOP the release of s t ra in  prokess, (4 =-I, 3 3 + 

A m  
and t? = 1 f o r  t h i s  f i r s t  s t ra in  reversal,, Here !$=T Os the 

'arc length (s t ra in)  corresponding t o  the point s t ra in  reversal, Thus, 

Now, since fo r  -t. Pelease OP s t ra in  

The constant 

the second dsrivatSve 

must bs greafer than zero, and the condition that 
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be greater than zero yields the condition that b 

than zeroo These are the same conditions which were obtained for 

the straining process, There is, however0 the additional condltlon 

that  the stress return t o  zero a t  the permanent set, That is, when 

%he s t ra in  8s k(?, (or the arc length reaches m-k(  2) 

stress must be zeroa Thus, 

must be greater 

a 1 the 

44,441 

For given values of n(m4), C b k, and YM equation (4,441 

w i l l  determine the t h i r d  material parameter, a , By using (4,371 

wa can obta In the va lue of 

(4,441 yiellds the following re6ation for determining a , 
~~~~~, substDtutOng t h i s  value into 

For the process of re-straining ts,=+f 3 n= 

reta 0 ns the va Iue of 
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When the graph%te specimen has been re-restrained t o  the point of the 

previous maximum s t ra in  the corresponding arc length Is 

s =  r/\ (% -k) . 

Thus 

Let b = 1/2 be the best f 0 t t o  the rnonoton 

E4,47) 

where th is resul-t follows from (4,441. 

C, Comparison to  Experiment 

We begin by assigning values t o  the constants found i n  

the kernel function (4,241, The constant C has been shown t o  be 

the i n i t i a l  tangent modulus, For the sake of comparison l e t  the 

constant =: 428 Ibs, Since graphite i s  a ra te independent 

material any one ra te of straining i s  equivalent t o  any other ra te 

suitable unit ,  say I/sec, 

c straining port ion of 

the graphite stress-strain curveo 

be 0,I On our un i ts  of s t ra ino Assume that  our s t ra in  measure 

multip6Oed by 3570 yields the s t ra in  En uni ts  of 

the above values for the constants we f ind that  

0,53, The constanP Is equal t o  1/2 fo r  both the release of s t ra in  

The permanent set Is assumed t o  

In./in, With 

i s  approximately 
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and re-straining processes and Is zero fo r  straining, The value of n 

Is zero fo r  straining, one f o r  the release of strain, and two for  

restraining, Thus we have, for straining, 
A 

C = 428 %bs,, w\ = I ,  b = t/Z, 

For th& rat6ease of s t r a i n  and re-straining the f i r s t  four equal i t les 

I( = 0.2, = YI = 0. 

above are retained, but we have fo r  the s t ra in  re6ease process, 
A 

,yI = I ,  8 = 612, 

and fo r  the restraining process, 

N o w  fo r  s t ra in ing we may write, 

For s t  r a  0 n I ng 

table t ,  

- - , thus we may wri te  down the values I n  



49 

The reiease of strain process Is assoclated with the foilow- 

ing kern06 function, 

and the stress for this strain release process Is given byo 

(4,52f 

(4,531 

FOP the strain release process the arc length Os equal to 

netther the tlme variable or the strain, but Is from (4,121, 

or 

94-55] 

(4,561 

The strain E %  given by (4,181 and ‘is, 

r= 1 -  e 44,571 

Thus we may now write the values of the stress corresponding to the 

strain inputs as shown ‘in table Si, 
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TABLE I D  

Far rft-strakning the kernel function becmesp 

FOP fe-straining, however, by (4,161 

or 

and by &4,69) 

44,581 

(4,591 

(4,601 

(4,621 

44,631 

(4,641 
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Thus we have the va lues shown in  tab le I I I 

TABLE I I I 

The stress-strain curve plotted from these values Is 

shown, in Flgo 13, to closely reproduce an actual expsrlmental 
I *  

graphite stress-strain c u r d  for cyct tc straining. Thus our model 

, appears to be a suitable r ~ p r ~ ~ e n ~ a t i o ~  for thq cycllc straining 

bhavlor of ac.tor grade po 1 ycryrta I I D ne graph I te, 
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Y e  THE THREE DIMENSIONAL THEORY 

A. Invariants of the Transverse Isotropy Group 

I n  t h i s  sectKon the basic theory of t W  hwwlants  of the 

transverse isotropy group Os gtven [37], [38], c&bJ, We s t a r t  with 

the def in1 t l o n  of a tensor invariant, 

with n components A,, A,, a e * a I A, 8 

mapped onto the componants A*t, k*a 
formatfon of spa-, t h  n a function M(IA,,, W a e j A J  of the tansor 

components w 0 t h  the property that 

Let A be an arb l t rary  tensor 

1 . 1 ~  these components are * 
e .A y\ by some I 1 war trans- 

d an fnvarlant of the nsor A In ( 5 , l )  A Is  called the 

det'ermlnant of the transformation and 9 Is cal led the wsfght of 

the determtnant, When g:o the lnvarlant H 
lnvarlant and when g#o t h  lnvarlant Is cal led a re la t ive 

I w a r  f ant, 

Is termed an absolute 

Analogously, t f  Is an arb l t rary  group of lfnear 

transformattons L I tn an n-dimensional vector space V 8 then 

w ts an absolute lnvarlant of 8 i f  f o r  every I lnear trans- 

formation L In [ 

re given 3n a r ~ ~ t r a ~  function H' on v which i s  
I 

also lnvarlant under [ may be expressed as some 
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function of the functlons 

var I ab I e, 

Hi ( ) Thus for  a functlon of a single 

and for  a function of many variables, 

where is a function of the 'indicated variables, 

It i s  worthwhile t o  note tha t  the in tegr i t y  basis, as 

defined above, Os a function basis which is, 'in general, d i f ferent  

from the usual basis f o r  a n-dimensional vector space, 

We can now state the most 'important theorem In  the theory 

of Invariants whlch 1s due t o  D, Hi lber t  C401, 

number of variables has a f i n i t e  system of independent invariants, 

The transverse isotropy group 1s defined as that continuous 

A quantic I n  any 

group of motions such that  a i l  directions 'in a material whlch are 

perpendicular t o  the axlall d i rect ion h are equivalent, 

that the transverse isotropy group is a subgroup of the orthogonal 

groupo There are various types of transverse Isotropy depending on 

whether or not certain refIect8ons are permitted as symmetry opera- 

t ions [4i]o 

ls characterized by the admission of ref lect ions i n  the planes 

perpendicular t o  the h-axis as symmetry operations, This implies 

that  vectors of the type (0 ,  0, h )  w % 6 6  be mapped onto vectors of 

the tyoe (0, 0, -h) by the reflections, 

I t  i s  obvious 

Graphite exhibi ts the type of transverse isotropy which 

We now state two baslc th~orems concerning the de-termin- 

at lon of the invarlan-ts of the transverse fsotropy group, F i r s t ,  ff 
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the fusaction w on ?/ Is an invariant of then w may be 

expressed as a function of a finite number of invariants of fC.3 (I 
This Is a consequence of Hilbert's theorem, Second, i f  {GI i s  the 

f u l l  orthogonall group, then the complete table of invariants can be 

expressed i n  terms of 

where u, v).. are vectors in ( U  V ) denotes the scalar 

product 0% and '\p , and )\/r 6 . )w denotes the determinant 

of the vectors U,V,...,We 

€3, Material Symmetry 

In order -bo achieve a compSetely general description of 

the mschanlcai properties of graphite, the constitutive equation for  

graphlte must be written Pn a form whOch w i l l  exhibit the symmetry 

properties of the matertal, 

the invariants of a system of second order Pensors under the transversely 

isotropic group of transformations, 

In our case the problem reduces to finding 

3s the general c o ~ ~ t ~ t u t ~ v e  equation for graphite, In (5,6) 

and are symtrKc second order tensors, Now I f  a given materlal 

obeying the constfhttOve relation (506) Is observed to be transversely 

isotropic, then the constitutive relation (5-61 must be form 

invariant under the group of ~ r a n ~ f o ~ a t ~ o n s  which define the trans- 

verse Iso-Wopy propertyo I f  the z-axis Is specified as the symmetry 

8 
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axis of the ma-btzrlal, i,e, the h-axis, then the transverse isotropy 

group Os generated by the fo l  lowing symmetry transformations C421, 

and 

a 

(5.7) 

along with the 8desrtBty operation, 

EmpIoying an analysis similar t o  tha t  used by Adklns C431, 

[44] i t  can be shown that  the PioDa stress tensor 

expressed in  terms of a po%ynomSal I n  the si'raln rate, where 

i s  Invariant under the transversely isotropic group of motions. We 

can then form symmetric matrix polynomials i n  the s t ra ln  rate, 

require tha-b these matrix polynomials be invariant under the 

transverse K S O ~ P Q P Y  group, then by. introducing appropriate kernel 

functitpns the invariant matrlx polynomials may be transformed Onto 

our integra I approxOmatDon [4610 

nc$) can be 

nr$l 

We 

. 

Llanir and DeHoff e451, [46] by applying Phe theories of 

%hat a symmetric matrix 

s Invariant under the transverse 

ynomPa1 formed by the Irre- 

and 1 where 

Adklns and Pipkin and ROvlin deduced 

polynomial in  the strain rase which 

%sotropy group coinsides with ?he po 

duclble group of producPs of 
L 

a= 
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We combine thesat products with coeff icients made up of scalar tnvarl- 

ants under the transverse lsotropy group, These scalar invariants 

are polynomfals In the elements of an fntegrtty basis fo r  the 

invariants of E (s) under the transversely Isotroptc group of 

transformations, The Irreducible group of products fo r  any f l n l t e  

* 

number of symmetric 3x3 matrices has been dertived by Spencer and 

R i v l l n  C47I0 The expresslon fo r  the irreducible tnT'sgr1I-y basis of 

scalars fo r  invariants of any number of symmetric 3x3 matrlces 

under the transversely tsotroplc group of transforrnatlons has been 

der 1 ved by Adkt ns c443, 

FoI lowlng Spencer and Rlv l  I n  a symmtrlc matrfx polynomial 

in two matr~ces, A and B 8 can h expressed In terms of the 

followtng, 

I n  the development of the one dimensional consti tut ive 

equa'tlon there was no need t o  consider the transverse isotropy of 

the graphite specimen In  the tharory, When conslderlng general t h  

dimaansional straining prcxesses, however, the symmetry of the graphtts 

sample must occupy an important placer i n  the theory, The basic 

ded i n  order t o  Incorporate the transverse su I t s  which are 

Isotropy of graphite Into the, I f n  r term of the 'integral spproxi- 

mation have already b I d  down, I f  one ffnds Ot desfrable t o  
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include some of  the 

then the results of 

matrlces may be app 

higher order terms of the integral approximation, 

Spencer and RlvlOn and Adkins for  many 3x3 

led, I t  should be noted that the number of 

terms whlch ar lss I . .  the integrals beyond the t r i p l e  Integral term 

becomes prohtbtttvely large. 

Tha terms i n  (5,s)) may be applied to the llnsaar term i n  

the integral approxlmatlon In order t o  taka the, transverse I s ~ t r o p y  

Of the materlal in to  pIccounfe To this and we set 

In ( 5 , 9 )  where 1 i s  deflnsd by ( 5 , 8 ) .  Since only the l inear term 

of (3,261 Is terbn Into conslderatlon we wlll, fo r  the sake of 

consistency, re ta in  only thos terms in  (5,s)) whlch are Ilnear In 

e (53 Thus with t h i s  statement of consistency and (5,lO) the 

tab le  ( 5 . 9 )  reduces to, 

(5.11) 

wharet 

We now apply Adklns' resul ts on the lrreduclbie group of 

scalars fo r  sy 

transversely is&roplc group of transformations, 

t r t c  3x3 matrlws which are Invariant under the 

In 

n t  of consistency, only those terms whlch are llnear 

i n  

f o r  a symmetrlc 3x3 moltrlx which are lnvarlant under the group of 

&('!j) are retained, This y ie lds the ir duclble group of scalars 

transversely Isotropic motlons, 
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TrECs) and tr (iflcs)). (5,131 

In index notation the l inear term i n  (3,261 may be wri t ten 

as 
h 

d s  0 

The res t r i c t i on  of the integral (5, 41 t o  the description of a 

transversely isotropic material Os now accomplished by combining 

the terns (5,111 with the coeff ic ients (5,131, Thus the description 

of the response of  any transverse I y i sotrop I c ra te i ndependent 

materKal Is accomplished by means of the following relation, 

c 

(5.15) 

In (5,15) the k;(sl are functions of t he i r  indicated arguments and 

the stress and s t ra ln  ra te are second order tensors [46], 

The parameter S On 45,141 and (5,151 represents a general- 

izat ion of the arc length used i n  the one dimenslonai representation 

and it Is defined by, 

It can be seen f rom (50 

interpreted On terms of 

strain, Thus the kerne 

61 tha t  the arc length parameter 3 must be 

the general three dimensional state of 

..(s) i n  (5,151 are also 
I 
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functions of the three dimensional state of strain, b m  speclfl- 

cally the kernel functions 

parameter which i s  an invariant of the strain rate tensor, 

C, The Six  Dimensional Strain Space 

Kic51 are functions of the arc length 

Let us look at some of the properties of the arc length 

parameter, Consider first the manifold formed by the three dlmensfon- 

al symmetric second order 

dOmensiona6 I lnear metric 

the scalar product of any 

product Is def Oned by the 

tensors E-* This manifold forms a s ix  

space, The metric i s  deflned by means of 
‘3 

1 

( 11 - (2’) 
two elekents E and k and this scalar 

quat ionp 

The norm in this space i s  formed from the scalar product, viz,, 

and the distance between any two points in the space i s  given byp 

Mow lstc a tensor in this six dimensional space be given 

The derlvatlve with as a functlon of some scalar parameter 

respect to e 
‘2” 

wil l  not, in generalp be a normalized tensor, If, however, this 
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parameter Is changed to the new scalar argument, as given by 

(5,i6) then the tensor 

w i I I be a norma I I zed tensor [48], 

Novozhllov has shown that for an srbtSIrary tensor curve 

In our s i x  dimensional space, the following retattons hold, 

By means of the relations (5,221 it can be seen that the are 

norma! Ized and mutually orthogonai, 

The applicability of the equations (5022) can best be 

seen by means of a two dimensional analog, 

a smooth curve Os specified by expressing its position vecfor 

x=(X1,X2) 

vector e,&, and the unit normal vector e , c S )  can be deftned i f  

On a euclidean plane 

as a function I f  Its arc length S The unit teagent 

x(s) Os &ice continuously differentiable and If the vector ?(SI 

is nowhere zeroo Then the vectors 

related by the Frenet formulas, 
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The function %(S) is  cal led t h e  curvature. 

Thus for  an arbi t rary symmetric tensor the relat ions 

(5,22) can b e  thought of as a generalization of the Frenet formulas. 

By means of these formulas we can determlne, f o r  an arbi t rary tensor 

history 

the history, 

D, The Straining Program 

E (5) , a set of s ix  orthonormal tensors a t  each point of 

We wish t o  obtain results which w l l l  be applicable t o  

actual stress-strain c~rves, To accomplish this a speci f ic  strain- 

ing program must be specified, 

material i s  strained from i t s  undeformed state and that there i s  a 

single s t ra in  Onput t o  each of the three principal material dlrec- 

tions, The assumed stralning program v a l i d  i n  the time interval 

To t h i s  end we assume that the 

O L 2 - 4 %  is, 

In (5,241 we assume that  ml, , and r n j  a l l  have the 

same sign, With t h i s  assumption (5,241 represents a matertaf w i th  

one axis On compression and the other two axes On tension, or one 

axis i n  tension and the other two axes On compresslon. We w Y I i  

only consider the case where the material i s  strained when it i s  
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aligned e i ther  paral le l  or perpendicular to  i t s  h-axiso This i s  

done so that  our theory may be compared to the exist ing experimental 

data , 

Apparently there Is no available published experimental 

data whlch w i l l  enable us to  determine the of f  d'lagonal terns of 

the stra!n matrix, 

on the maln diagonal of the strain matrix, 

*he Fnput t o  the materlal are functionally dependent upon the terms 

Thus we are forced t o  consider only those terms 

These terms whlch we c a l l  

on the main diagonal of  the stress matrix, or the output, 

evident that  for  t h i s  s l tuat lon a vector theory could have been 

It Os 

developed where the output vector 'is given as some functional of the 

input vector, A vector theory would have been easier t o  develop, 

but it would have lacked the genarallity of the present theory, Our 

theory Os capable of describing the shear behavior of graphite and 

as soon as date of t h i s  type Is available it c a n  easi ly be incorpor- 

ated in to  wr formulation of the three dimensional response of 

graphite, 

By the transverse isotropy property of graphlte It Is 

obvious that- i f  the material 'is strained and It i s  observed that 

r / l P = r n 3  
strained paral le l  t o  the h-axis, 

then i t  cap be concluded that  the material i s  being 

The arc length parameter S may be determined by applying 

equation (5,1&) to the straining program specified by (5,241, The 

s t ra in  tensor determined by the straining program (5,24), is, 
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The corresponding strain rate tensor Is 

i;jm = 

The integrahd squared of (5,161 may now be w r .  . .an ant 

Carrying out the operation indicated by (5,161 yields, 

S ( W  = fi21 

where 

it is, 

(5,281 

The relatlon (5,281 allows us to write the strain and 

strain rate tensors, (5,251 ahd (5,261, On terms of the arc length 

parameter , 
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The trace of the s t ra in  ra te tensor (5,311 Os, 

The release of s t ra in  process corresponding t o  the straln- 

Ing process (5,251 Is 

where 06  k,, k,, k3 The rest r ic t ions which have been 

placed on mi. , vv\, I and y Y \ 3  f o r  the straining process 

are retained f o r  the release of s t ra in  process, 

are va6 Pd In the time interval 1/2 4 ? 6 2 
The equatlons (5-33) 

, and correspond t o  

a simultaneous reversal of a l l  three inputs a t  the instant I n  time 

s i/2 Once again only t e n s  on the main diagonal of the 

s t ra in  matrix are taken Onto consOdaration because of  the previously 

given reasonso 

A t  the point  of s t ra in  reversal we have, as a consequence 

of e i ther  (5,241 o r  ( 5 , 3 3 ) ,  
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For each of the three Inputs there are three re la t ive  maximum strains 

(5,34) t o  which correspond three permanent sets, 

used 90 describe the permanent set In the scalar case (4,5) we have 

f or - 

In the notation 

_p 

0 

The strain ra te  matrix GorrespondOng t o  the strain matrix . 
defined by (5,333 Is 
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Let 

then 

‘(5,381 

( 50391 

st can be seen from (5.28) tha t  the f i r s t  term on the r i g h t  hand 

side of (5,39) i s  equal t o  M/z and consequently (5 ,39 )  becomes 

whlch Is va l i d  On the interval  ‘4% &, , Equation (5,401 

may be wr i t ten as 

(5,411 

where (5,411 i s  va l i d  On the arc length interval  -952 e s  (.Ah- +N) a 

When (5,461 Is substituted Onto (5,331 the s t ra in  matrix Os obtained 

as a function of the arc length parameter, 

s t ra ln  matrix the following s t ra in  ra te  matrix i s  obtained, 

By d i f fe ren t ia t ing  this 



67 

The trace of the above strain rate matrix Is, 

(5.43) 

Let us now look at the re-straining program for the three 

dimensional case, 

where the prevlously pla&d restrictions on rnl, m2, rn3, k,, kg ,  

and k, are retalned. The strain rate matrix correspondlng to the 

strain matrix defined by (5.44) Is, 

Thus in .the previously defined notation 

(5,461 

By means of (5,401 evaluated at 

the arc length parameter can be determined In the ?!me intervaf 

? = 1 and the relation (5.461, 

2 * S i  1 
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Equation (5,481 may be written as 

(5,471 

and by using th is  the strain rate matrix may be wrltten In terms of 

the arc length parameter, 

Eij (s) = 
0 0 

The t race  of t h i s  matrix is, 

(5,491 

The relations (5,491 and (5,501 are vaiid i n  the interval 2 2 1  or 

E, Discussion of the Kernel Functions 

A t  t h i s  point only the six constants mL, m2, rrr3$ 

8must be speclfOed On order to  apply our stress-strain 
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relat ions for  straining, release of strain, and re-straining. These 

constants arise from the specif icat ion of the inputs t o  t h e  material, 

Other constants w i l l  appear 'In our f i na i  formulation and they w i l l  

be associated with the kernel functions K; (5) (. We now provide 

further reasons fo r  choosing the arc  length parameter as our measure 

of the deformation and also explain how the kernel functions are t o  

be chosen, 

We have previously endeavored t o  show, by comparison with 

the cdasslcal theory of plast ic i ty ,  that the arc length parameter 

%s a sulitable measure of the amount of deformation which has taken 

place within the material, 

hydrostatic pressures do not cause any appreclablcu p las f l c  defor- 

mation I n  metals and the plas ic  defo ti(sn24. have been shown t o  

take place along shear planes Thus In most theories of p las t i c  

deformatlon oqly the deviator c stresses are of any Import, 

Brfdgeman has shown experimentally t h a t  

Theories of p las t fc  deformatlon ex is t  which take normal 

stresses into account, Some theories of granular work hardening 

mate+ilals are of t h i s  type, 

cavitat ion of granular materials It has been shown that the residual 

increase On volume i s  not proportional t o  the work done i n  the 

deformatfon, b u t  t o  the arc length of the p las t l c  deformation path 

[49l0 Here the parameter which seems t o  provide a natural descrfp- 

t i o n  of the cyc l i c  loading behavior of granular materials Vs the arc 

length parametero 

fn fact, 'in the theory of the p last ic  

Graphite may be classified as a granular material, Any 

polycrystal l ine material which Os both mfcroscopical6y and super- 

mlcroscoplcai l y  heterogeneous and anisotropic (on account of the 

69 
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granular structure and the individual defects in the structure of 

each grain), forms a s ta t ica l  % y  Ondetermhlnate system from the vlew- 

point of structural mechanicso As the loading progresses the ele- 

ments On t h i s  system gradually begin t o  deform piast ical ly,  This 

Os observed macroscopOcally as the monotonic increase i n  the 

coefficient of f r i c t ion .  

e las t i c  interactions are set up between the elements of the system 

While these p las t i c  deformations progress 

and t h i s  i s  interpreted as the hardening of the materOal, Thus we 

see that since graphite exhibtts the above properticis it may be 

c lass i f ied as a granular material, 

On some of the theories of granular materials the arc 

length parameter i s  found t o  be a suitable parameter f o r  describing 

The mechanical response of the materials considered, It has already 

bwn noted that the residual increase i n  volume, i n  a granular 

material, due t o  cyclllc loading has been proven t o  be propottfonal 

t o  the arc length of the p las t i c  deformation path, 

length should also be a su'itable parameter fo r  descrlbing the 

Thus the arc 

mechanical behaviior of polycrystal l ine graph'lte, 

This discussion of =the theory of the p las t i c  cavi tat ion 

of a granular mater ia l  and the previous discussions of work harden- 

ing p las t l c l t y  tend t o  indicate that  the arc length should be the 

natura f parameter t o  use 0 n descr I b 0 ng the mechan 0 ca I behav io r  of 

graphite, 
= .  

There are many other examples perttnent t o  the use of an 

arc length, or work hardening parameter In classical plasticity 

and re6ated topics, which have appeared since Odqv?st@s work [50] 

which interpreted the p las t i c  y ie ld  condjtion On terms of stream- 

6 Ines, 
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hs in some of the theories of granular materials the 

mechanl ca I response of graphite does not seem t o  lend 0 tse I f t o  

description by the deviatorlc; stress or  strains. 

that the normal stresses also contribute t o  the p last ic  defonnatfon 

I n  graphite, While 'it i s  true that  a slngle crystal of graphite 

w % l  I not be Influenced, t o  a great extent, by hydrostatic stresses, 

the macroscopic problem of a, To a large degree, randomly oriented 

polycrystal l ine structure w i l l  be dependent upon the magnitude of 

these hydrostatic stresseso 

We have assumed 

$*.  L 

Hence from both our geometric and physlcaf arguments It 

appears that  the arc length parameter Os 'Indeed a reasonable 

measure of +he deformation of polycrystai l ine graphite, 

The kernel functions k; CS) have been spec0 f ied as 

functions of the arc length parameter which Os dependent upon the 

ent i re  three dimensional state of straln. From our experfence 

wlth the one dlmensfonal representation of graphite It Is reasonable 

to assume that  the k; <SI are of exponentla1 form, 

In  fact, with the choice of the arc  length as the i n t r i ns i c  

t i m e  associated with graphite the exponential form of the kernel 

function i s  necessary En order that the three dimensional theory 

reduce t o  the previous6y derived one dimensional model, That is, 

when there Os only one s t ra in  input the three dimensional theory 

should yOeld the previously derived one dimensional model, 

To t h i s  end w e  assum that  the kernel functions are of the 

following fonn, f o r  monotonic or cycI,ic straOn'Ing 
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The re la t ion (5,151 has t h e  same basic form as (4,24), but (5,151 Os 

of a d i f fe ren t  charactera Pn 45,151 the parameJ.er S Is no longer 

dependent upon a scalar straln, but upon the en t i re  three dimensional 

state of strain, While we have continued t o  use the l e t te r  S t o  de- 

parameters, in the one case S i s  a path length On 

% 

a oGbe dimens8onal space, and %n the other S Os a path length In a 

s i x  dimensional space, 

The value of the arc length corresponding t o  the reversal of 
4 

s t ra in  Os agaln denoted by $ , and 3% Os the a rc  length correspondlng 

t o  the unloaded condition, The value of 5 corresponding t o  the per- 

manent set defined by (5,351 Os 

* 

For this case of three dImensiona% s t ra in  the magnitude of the s t ra in  

Is given by the scalar PokmEsd from the square POOP of the scalar 

p roduct # 

This i s  also i t a  norm of the six dimensional space formed by the 

COmpQRsnts of the strain tensor. The strainfng process we are con- 

sidering Os well defined insofar as aBO three s t ra in  inputs are re- 

versed a t  the same ti , and it Os because of t h i s  that  there Os no 
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problem On specifying complete s t ra in  reversals. 

n as the number of complete s t ra in  reversals. 2 b, and the C i 

denote constants which are t o  be determined, I n  t h i s  manner the 

three dlmenslonal formalism we have developed w i l t  reduce t o  the 

previously derived one dimensional case, 

F, Application of the Kernel Functlons 

Hence we may spec'tfy 

The kernel functions (5,51) are now substituted in to the 

const l tu t ivs  equation (5.15) while making use of the relat ions 

(5,30), (5*319, and (5,32), Thus the retat lon for straining In 

the Onterval fi 06y&, &sL<, may be wr i t ten as 

P 0 0 0  

Thus we may write, 

(5,541 

., 
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A 

because $ =  0 

For the straining process In the I l -d i rect ion we have, 

and the f i r s t  darlvatlve o f  the stress n the 

(5.58) 

l-dfrect ion is, 

For graphlte the f i r s t  derivative 45,591 must always be greater than 

zero (assuming tha t  mi> 0 1 f o r  at I 3 In part icular when 

$ = e  0 we have, 

The constant on the l e f t  hand side of the inequality (5.60) may be 

€nterpreted as the tangent modulus of the graphite specimen for the 

stress-&rafn curve i n  the 6 J-direction, 

From the condition tha t  the second der ivat ive of the 

stress 
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always be less than zero we obtain the condition tha t  

The re6atOon between the applied strains and the stresses for the 

release of s t ra in  process# i n  the interval ~ A T ~ I -  f or equivalently 

# f S  by (5,151, (5.421, (5.431, and (5051)# 
4% 7 5  S t  



76 

As In the one dimensional case l e t  us require that, I n  

the Il-d9rectlon, the stress return t o  zero a f te r  the completion of 

the release of strain processo Hence, 
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The above equation w l  t I be given values of M, s\J, k; 
m,, , b and c. determine the material parameter a . 

I 

Let us now look a t  the re-straining process, 

The f i r s t  term on the r ight  side of (5.69) i s  zero, because we have 

assumed that the strain release process returns the graphite specimen 

to a state of zero stress, Thus we may write, 
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The general t r i a x l a l  equations fo r  straining, s t ra in  

re6ease and restraining are now complete. In  each case the three 

dimensional equations w i l l  reduce t o  the previously derived one 

dimensional equations when only one input i s  considered. 

F, Concerning the Appl icabi I I t y  of the Results 

In order t o  better see the appl tcabi l i ty  of the resul ts 

l e t  us look a t  the experiments we have been using as a check of our 

theory, In these experiments a stress input was applied t o  a 

graphite sample I n  one direct ion only and the strains, being the 

outputs, were observed along the pr inciple axes of the material. 

Thus a stress was applied t o  only one principal direction, the other 

two direct ions having no stresses applied t o  them. We then reason 

that I f ,  i n  our theory, the observed strains are used as the inputs 

t o  the materfal, then the theory should predict the correct experi- 

mental stresses which were applied to  the material, This requires 

that  we should predict a stress i n  the Ii-direction, but no stresses 

i n  the 227 and 33-directlonsW 

Thus we see that  In  order t o  apply the exist ing date we 

w i l l  have t o  assume the type of data reversIbiI1ty explained above. 

Specifically, we must assume that  the stress Input-strain output 

data can be used i n  our s t ra in  input-stress output formalfsm. We do 
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not know of any experimental evidence which would tend t o  substantiate 

t h i s  type of reversibi I ity of data, but we know of no experimental 

evidence which would tend t o  contradict t h i s  type of  behavior I n  

graphite, For the moment, however, l e t  us assume that  t h i s  is a 

va l id  type of behavior f o r  graphite. 

The question arises: why not Invert the consti tut ive 

equation and obtain a re la t fon with a stress input and s t ra in  output? 

In t h i s  manner we would be able t o  handle stress inputs and apply 

the exgerlmenta6 data dlrect ly. There are, however, d i f f i c u l t i e s  

In using t h i s  method, The d i f f  cu l t ies l i e  not i n  the mechanics 

of the inversion process, but On the physical significance of the 

arc length of the stress path i n  stress space. An additional 

d i f f i c u l t y  arises i n  f inding suitable kernel functions to be used 

in t h i s  representation, In the stress input  formalism the kernels 

do not necessarily have t o  be related t o  the kernels I n  our theory. 

Even more, they do not necessarily have t o  be of exponentlal form, 

Also, I f  we perform t h i s  inversion a l l  of our arguments based upon 

the concept of work hardening p l a s t i c i t y  w i l l  no longer have any 

app19cabfllty8 and these arguments could not be carried over t o  apply 

t o  the arc length I n  stress space, since one does not usually speak 

of a stress hardening parameter, 

stresses does not have the same physical signfflcance as the a rc  

length IR st ra in  space, 

of the arc length i n  stress space as the measure of the deformation 

would require a great deal of e f for t ,  

The arc length as a function of the 

To provide the Just i f icat ion for  the use 

A t  t h i s  point l e t  us look a t  the consequences of  the 

assumption of reve rs ib i l i t y  of the data, F i r s t  t h i s  requires that  
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the stresses On the 22- and 33-directions be zero f o r  the straining, 

refease of strain, and re-straining processes, 

ed e i ther  by requiring t h a t  C1 , e , ,  and c5- vanish, or by f inding 

suitable combinations o f  the mi, k; , and 

This can be accomplish- 

C,, c ,  , and c, 
Thus we have a reasonable representation fo r  the behavior 

of graphlte fo r  the  experimental case discussed, One must not forget, 

however, tha t  we have assumed tha t  we can take stress input-strain 

output data and use it as i f  It were s t ra in  Input-stress output data, 

Errors w i 6 l  probably ar ise because of this, 

source of er ror  i n  our development, 

This i s  not the only 

Any discrepancy between theory and experiment may be due 

t o  our use o f  the l inear term I n  tho integral approximation. In 

appiying the integral approximation (3,261 t o  the bas€c const i tut ive 

equation, the f i r s t  term of  the approximation was taken t o  represent 

the mechanical response of  graphlte, while the remaining terms were 

neglected. 

mation i s  not su f f i c i en t  t o  describe the mechanical response of 

t-eactor grade graphite, 

the 'integral approximation i s  not always su f f i c ien t  t o  describe the 

mechanIcaS behavior of some materials, For Example, Wang and Qnat 

[51] have shown tha t  even the f i r s t  few terms of the integral 

approximatlon do not y ie ld  resul ts which can predict, with reason- 

able accuracy, the mechanical behavior of 1100 aluminum a t  300° F, 

I t  might very well be that  t h i s  single term of the approxf- 

Engineers have found tha t  the l inear term of 

This s i tuat ion may also e x i s t  fo r  the general three 

dimensional response of some types of reactor grade graphite, If 

so, then perhaps there i s  an argument, strong enough to  outweigh 
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arguments of  complexity and unwieldlness, t o  include higher order 

terms of the approxfmation In order t o  obtain a better representation 

of the mechanical properties of  graphite. However, as Pipkin has 

pointed out [52] there Is no guarantee that the addition of more 

t e n s  of the approximation w f  I I produce a better approximatlon, 

fact, the addition of  j u s t  a few higher order terms may y ie ld  an 

approximation which i s  less accurate than that obtained with the 

In 

l inear term alone, 

say how many more terms w 4 6 l  suf f ice I n  order t o  get the Job done. 

Also, There i s  no theory of convergence which we can apply to  our 

integra I series, 

H, Comparison t o  the Experimental Data 

Thus i f  higher order terms are needed we cannot 

Consider a specimen of graphite exhIbitfng one weak axis 

and two strong axeso The weak axis i s  In the 11-direction, Thus 

alt  data taken when the material was loaded paral le l  t o  the I l -  

directton w i l l  show t h a t  the data f o r  the 22- and 33-directlons are 

the sameo I f  the specimen of graphilte i s  loaded paral lel to  the 

22-direction then we will obtain three d i f ferent  s t ra in  outputs, By 

reversing th is  data we f ind  that  we should have three inputs t o  the 

material and two zero outputs, The following data i s  the resul t  o f  

loading a graphite specimen paral le l  to i t s  22-axis0 The re la t i ve  

maximums are determined by, 

(5,731 
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and the permanent set by 

k ,  = 0.143 1 
1 

k, = 
I(, = 

using these values we f 

N =  9 -3%- 

0,134 )- 

nd that 

(5,741 

26,080 (5,751 

22, 5 7 3  (5,761 

(5.77) 

The process defined by the above constants will he referred to as 

case 1 0  

When the material was stralned para1 le1 to the Il-dlrection, 

the following constants were obtained, 

and 

(5,781 . 

(5.791 

(5,801 

(5-81 1 

45-82) 
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The constants (5078)-(50&2) w i l t  serve t o  deflne the process we w i l l  

re fer  t o  as case I I ,  Straining paral le l  t o  the 33-direction i s  equf- 

valent t o  straining paral le l  t o  the 22-directton and thus there i s  

no need t o  consider t h i s  process separately, 

For case I we have the following basic equations f o r  

straining, 

where 

where 

E,, = mp T 

33= -mJ 

(5.84) 

(5,851 

(5.87) 

(5.89) 

Equations (5.83)-(5,89) are va l i d  for 
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For the release of strain in case I, the basic equations 

where 

(5,901 

(5.91 1 

(5 .92)  

(5.93) 

(5'94) 

(5 .95)  

(5,96) 
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where 

(5 .98)  

(5,991 

where 

where 

Equations C5,97)-(5,103) are valid for 

The basic equations for case I I have already been stated and 

they are (5,241, (5028), (5,331, (5,40), (5.441, (5e55), 45*56), 

(5,57), (5,631, (5,641, (5.651, (5,701, (5.711, and (7,731, Pn a l l  

these equations we must set ma '=r w3 .1 
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In case I the stresses On the 33- and Il-d9rections 

should be zero fo r  straining, the release of strain, and re-straining, 

Thus (5,831 reduces t o  

and (5,90) reduces t o  

where 

Equatlons (5,IQ4) and (5.105) are essential ly t h e  same re la t ion t o  

wlthil'n experimental error. 

very nearly sat is fy  (5,1051, 

re-straining equations are the same as those obtained from the 

strainlng equations, 

Constants which sat is fy  (5.104) w i l l  

These conditions obtatned from the 

From equation (5,881 we obtain the condition 

and from equation (5,951 we obtain 

4 992 f.21 1 LrO 109) 

We also conslder (5,608) and (5.109) as essential ly the same re la t ion 

t o  within experimental error., 
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Similarly In case I !  from €quation (9.51) we obtain the 

independent equation 

(5. I I O )  

We s0t 

as t h e  best fit to the monotonic straining portion of the stress- 

strain curve of case I , When q-=Mh we see that flZnC$)= 3600 IbS. 

In case I and 

additional conditions 

T j i  !& I= 3sdcjdk4 In case I 1 a Thus we obta In t h e  

and 

Equation (5,112) comes from (5,861 and equation (5,113) comes from 

(5,551 e 

Solving equations (5,1081, (5,1091, and (5.112) simultan- 

eously yields 
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Equations (5.113) and C5,104) yield 

c,= 0.470 

Cz= C d * I I I .  t 

We can now solve fo r  Cy which i s  found to be 

(5.117) 

(5.118) 

CL( = Q*QOb C5.Il9) 

Substltutlng the approprlate values i n to  (5.86) yields 

from which we obtain the values I n  table IV, which describe the 

straining process. 

TABLE IV 

The constant EL Os found by requiring tha t  the stress 

return t o  zero when the s t ra in  i s  released to the value of the 

permanent set, In t h i s  manner we find that  
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(5,121 0.80002'./62 

The equation for the release of strain (5.93) becomes 

flsa (a= -8 f 32,+~8 exp(-0.aOoiS$) (5,122) 

from which we obtain the values in table V, 

TABLE V 

0.6 I 15,298 I 2,323 1 10,542 I 

I,O I 24,327 I -29 I ,709 

For restraining we substitute the appropriate values into 

(5,1001 and obtain 

4,426- 270, 

for whish we obtain the values shown i q  t a b l e  V I ,  

( 5 ,  i23) 
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TABLE V I  

The values of the stress In  the 6 1 -  and 33- directions are less than 

0,50 Ibs, when the strain Is 13,040 <n. ph in 

Let us now consider case II, From the equat'ion for  straining 

(5,551 we obtain c5,124) which upon the substltutlon of the appro- 

priate values for the constants yields 

TABLE V I  I 



91 

Equation (5,631 ylelds the following relation for the release of 

strain when the appropriate values are substituted, 

In (5,125) we have used the following value for a 

(5,126) 

which was obtained by requiring that the stress return to zero when 

the strain attains the value of the permanent set, 

obtained Prom equation (5,1251, 

Table VI I I  Is 

TABLE V I  I 1  

For the re-straining process, equation (5,701 with the 

appropriate constants yields the following relation, 
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TABLE I X  

The curve obtained from tables I V ,  V, and V I  Is Illus- 

trated i n  Fig, 14, and the curve obtained from tables V I I ,  V I i I ,  

and i X  Is Sllustrated i n  Fig. 15. 

Thus we see that  the theoretical and the experimental curves 

are On agreement I n  case I even though a combination of the date for  

the 22- and 33- directions were used On the theory, More specif lcal ly, 

the data fo r  the 22- and 33- directions should have been identical as 

a consequence of the transverse isotropy property, but t h i s  was not 

the actual case as can be seen by comparing the experfmental curves i n  

Fig, 14a and Fig, 14b, 

I n  case I I  t h e  f i t  Is not very good, howeQer, the strains 

are extremely large and t h i s  may account for  the discrepancy beiween 

theory and experiment, When applying the integral approximatlons 

t o  such large strains it has of ten been found that  the l inear term o f  

the approximation Is not su f f i c ien t  t o  closely describe the mechanical 

behavior 04 the considered material when the strains are very large, 

With t h i s  On mind our theoretical curve seems more reasonable. I t  

i s  f e l t  that  the consideration of the th i rd  order term of the integral 
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approximation will yield a theoretical curve which more closely approxi- 

mates the experimental curve., 

Note that we have successfully obtained the result of 

having negiiglbfe stresses in the directions to which there was RO 

stress applied In the actual experiment. This combined with the 

results fo r  t h e  22-direction In case I and II-direction In case ! I  

constitutes a reasonable model of the three dimensional mechanIca6 

behavior of poIycrysta6IIne reactor grade graphite. 
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V I ,  CONCLUSIONS AND RECOMMENDATIONS 

The appi fcabi I i t y  of our three dimensional theory i s  

seriously lmpared by a Back of knowledge of the form of the of f -  

diagonal terms of the s t ra in  matrix, The theory i t se l f  remafns a 

va l i d  one, but I t s  app l i cab i l i t y  remains small, This can be 

remedied as soon as the needed data can be supplied, A l l  tha t  i s  

needed Is some t r u l y  three dimensional data, or some s mple t r i a x i a  

data which can be obtained from various general s t ra in  Input-stress 

output experlments, 

have zero outputs On two directionsl and th is  i s  not a +rue tes t  of 

the theory, This data does not ev0n allow the determination of a l l  

the constants, 

The only data avallable t o  us Imp ies that  w e  

Our one dimensional theory Is, along with Woolley's work, 

the best description of the one dimensional mechanical behavior of 

graphite, It i s  also fhe best description of the one dimensional 

cyc l i c  stralnlng behavior of graphite to  be found On the l i terature. 

The only other description of th ls  type of cyc l i c  strainlng [s that  

of Jenkins and as mentioned i n  the f i r s t  chapter it has severe 

limitations, 

Our three dimensiona6 

which has been applied t o  graph 

theory Os the 

te, and On t h  

completely original, I t  i s  the only integral 

only one of i t s  type 

s respect i s  

theory which can be 

applied t o  materfals which deform p las t ica l l yo  Only i t s  range of 

app l i cab i l i t y  need be determined, 
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i n  the development o f  our formalism which was applied to  

the mechanical response o f  reactor grade graphite no basic assumption, 

aside from rate independence, was made concerning the nature of the 

material up t o  the point the form of the kernel functlons were 

assumed, 

w f  I 6  be applicable t o  other ra te  independent materials and perhaps 

f'o even materialis wi th  almost ra te independent response. I n  par t i c  

%Os Pomulat.Pon seems readi 6y apgl lcable t o  the description of soi 

concrete, and s t ra in  hardening metals, 

Because of thOs we may reasonably expect that  t h i s  theory 

Looking retrospectively a t  the mathematIca1 model derived 

here we see that  the equations look simi lar  t o  those equations 

encountered In the l inear theory of  viscoelastici ty, From t h i s  

observation we may term our theory a theory of viscoplasticfty, o r  

prove more appropr late. some other term which may 

The question a r  

boundary value problems, 

ses as t o  the use of our 

I t  would be very desirab 

terms of time and position, i o  boundary conditions i n  terns 

length, Second, we must f i nd  a solut ion t o  the f i e l d  equat 

become unwieldy when wr i t ten On terms of the nonllnear arc 

It should be mentioned tha t  our theory i s  capable 

I ar  

5 ,  

theory In solving 

e t o  solve even 

the most sfmple boundary value problem, 

blocks t o  the solut ion of  t h i s  type of problem, 

dlscovsr how -to convert the natural boundary conditions, given 'in 

There are two basic stumblfng 

First ,  we must 

of the arc 

ons wh i ch 

eng t h  . 
of 

i n  fact, by following the work of predicting a y ie ld  surface, 

Morgan E533 a y i e l d  surface can be predicted which can be interpreted 

as the usual y ie ld  surface encountered i n  the classical p l a s t i c i t y  



96 

theories, 

be developed which w i  I I descfrbe the entire range of an elastic- 

plastic material, 

equation which can describe the cycllc straining behavior of an 

elastic-plast9c materlal In both the elastic and plastic ranges. 

It i s  possible thaf- by thls means one equation can 

That is, it may be possible to develop one 

Returning to graph! te It wou Id be very lnstructlve to 

obtaln both one dimensional and three dimensfonal hysteresis data 

for the Bauschinger effect in reactor grade graphite, Because of 

a lack of data for graphite I n  reversed tension and compression 

fhs case of hysteresis around the ot-igen of the stress-strain 

curve was not analyzed, 

be capable of predicting thls type of behavior adequately. 

It i s  felt thaf the present theory w i l l  

There are areas, outside of mechanics, where the type of 

analysis we have employed might prove extremely useful. 

R l v l  fn have shown that a theory of the type we have developed Is 

dlrectly appl icabls to the theory of magnetism C541. Our theory 

might also be applled to some o-f the problems fn the biological 

sciences where Input-output systems can represent t h e  blologlcal 

process under consideration, 

P pkOn and 



97 



W 

/- 
Q 

w i7 

98 

SS3tllS 



99 

Fig. 3, Spring Element 
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Fig, 5, Elastlc-plastic Model 
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Fig, 6, Elastic-plastic stress-strain curve 

Fig, 7, Generalized Elastic-plastfc curve 
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Fig, 8. Basic Graphite Element-' 
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Fig. 9, One Dimensional Graphite Model 
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Fig. IO. Black Box 
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Fig. I ta ,  The Straining Program 

Fig, Ilb.  The Corresponding Stress VS., Arc Length Plot  
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Fig, 12. Stress-Strain Curve for Equation (4,251 
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Fig, 13. Comparfsan of Theoretical and Experimental Stress- 
Strain Curves 



I07 

-0- Theoretical Curve - -- Exper lmenta I Curve 

4000 

3000 

4 w 

v) 

I 000 

5,000 I0,OOO I5,OOO 20,000 

STRAIN (,U in/ln) 

Flg. 14a. Comparison of Theory and Experiment for 
the 224frect lon (Case I ) .  Graphite 
spscfmcpn number ATJ-I-B-2-1 compressed 
parallel  to  the 22-dfrectlon. 
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Fig, l4b.  Comparison of Theory and Experiment for the 
3 3 - d i r ~ t f o n  (Case I ) ,  Graphite specimen 
number ATJ-f-C-2-1 compressed parallel to 
the 33-direction, 
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Figo 15, Comparison of Theory and Experiment 
(Case 1 1 ) .  Graphite specimen number 
ATJ-I-G-2-I compressed parallel  t o  
the I l-direction 
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